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Phase behavior and dynamics of fluids in mesoporous glasses
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Equilibrium and dynamical relaxation behavior of fluids confined in disordered mesoporous glasses such as
Wecor are studied based on a lattice model using mean field theory and Monte Carlo simulations. Preferential
attractive interactions between the solid surfaces and the fluid suppresses macroscopic phase separation, while
making the relaxation rate increasingly slow. The free energy landscape characterized by the presence of the
many metastable minima separated by finite barriers dominates both the static and dynamic behavior of fluids
at low temperature. Our results provide additional insight into the nature of hysteresis in adsorption measure-
ments of gases in porous glasses.
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[. INTRODUCTION standard form to fluids in mesoporous glasses with low po-
rosity such as Wcor has often been questiofigdEffects of
Confinement of fluids in porous materials can profoundlyconfinement due to the particular structure of the underlying
affect their macroscopic behavift]. One important class of microstructure are ignored entirely. Spatial correlation of the
materials widely used for various applications is the disor-glass solid distribution implies that a second length sdale
dered mesoporous glass, such as Wcor or controlled ponmeamely, the typical domain size of the pore structure, is nec-
glasses. Typically synthesized via a spinodal decompositioressary in addition to the microscopic length scalef the
glassification and subsequent leaching of a binary mixturegrder of molecular sizes for a minimal description of the
disordered mesoporous glasses are characterized by relsstem. Nevertheless, some qualitative features observed in
tively small porositiegvolume fraction of void spageme-  the random field Ising model are expected to play important
soscopic length scale of pores, and the disordered, intercomeles for fluids in mesoporous glasses. One of the most im-
nected network of pore structures. Prominent featureportant features that arise from the consideration of the ran-
observed in experiments of gas adsorption in such materialdom field Ising-type models is the presence of a rugged free
include the apparent absence of the macroscopic phase sepaergy landscape with many local minima separated by free
ration, and widespread hysteresis. energy barriers, which dominates thermodynamics at low
A traditional approach to describing such nontrivial prop-temperatures.
erties is to attempt extensions of the relatively well-known Recent studies using mean field thed8;7] of lattice
behavior of fluids confined in pores of simple geometriesmodels incorporating the physics of confinement and wetting
such as slits or cylinderg2]. Detailed descriptions of the more realistically in addition to the disorder effects in the
static as well as dynamic behavior can be obtained by theandom field Ising model have provided useful insights not
density-functional theories and simulations. A rather naturakasily accessible either in detailed molecular simulation stud-
idea of applying such approaches to disordered mesoporoliess [8] or studies based on simple pore geometries. They
materials is to assume that a macroscopic porous materigkovide a rather natural conceptual explanation of the origin
can be regarded as a collection of independent, noninteraadf hysteresis and irreversibility seen in experiments on fluid
ing pores with some statistical distribution of pore sizes.adsorption in disordered porous materigds7]. In the cur-
However, the disordered interconnectivity of the adjacentent paper we build on these earlier studies using both Monte
pore regions is ignored in such approaches, excluding th€arlo simulations and mean field theory and focusing on a
possibility of collective phenomena at length scales exceedattice model of a porous glagé]. We explore the equilib-
ing the typical pore size. rium behavior in more detail and also study the dynamics of
An alternative viewpoint is to start from the global, coarsethe relaxation processes in the model. Our work yields a
grained picture of the fluid in mesoporous glasses within théairly comprehensive picture of the equilibrium and dynamic
statistical mechanical perspective, and consider simple modelaxation behavior of fluids in disordered mesoporous
els designed to capture the essential physical ingredientgasses.
thought to be responsible for the phenomena observed in The lattice model studied in this work is based on a lattice
experiments. The lattice gas, or equivalently the Ising modelgas with disordered, spatially correlated site dilution and an
provides a natural starting point as a simplified model for theadditional,nonrandom attractive interaction between fluids
bulk fluids. The disorder that arises from the random spatiahnd solid surfacef9—11]. It incorporates the main physical
distribution of solid matrices, which exerts attractive “sur- elements of confinement, disorder, and wetting in a concise
face fields” on the the fluid, can be modeled in the simplestwvay, and has recently been successfully used to model fluids
level by random fields on each lattice sites, and one arrives a porous glasses within the mean field thepfy. The pres-
the random field Ising mod¢B], which has been extensively ence of a very large number of metastable states dominates
studied mainly within the context of critical phenome#a. the global thermodynamic properties, allowing one to cap-
The applicability of the random field Ising model in its ture many of the qualitative features observed in adsorption
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experiments within the mean field level. a “random field” whose distribution is coupled to that of the
The paper is organized as follows. Section Il describes thsite dilution via Eq.(2b). The effect of the surface field van-

model Hamiltonian and its relationship to other models. Secishes andh; becomes homogeneous whgr 1/2, and the

tion 1l discusses the Gaussian random field metidand  model reduces to a site diluted Ising model. Many of the

its application to the generation of cor glass configurationsontrivial features manifested by the model arises from the

used in the current work. Applications of the mean fieldasymmetryy+ 1/2, and it is useful to consider— 1/2 as the

theory and Monte Carlo simulations to the adsorption/control parameter responsible for the crossover from the site

desorption and equilibrium phase coexistence are discusseliluted to the random field type behaviors. However, we em-

in Secs. IV and V, respectively. General aspects of the relaxphasize that the model includes the effects of disorder seen in

ation behavior of fluids in Wecor, and the conserved orderthe random field Ising model and the effects of confinement

parameter simulation of the lattice model are described irand wetting that are missing in that model.

Sec. VI. The final section contains discussion of our results

and some concluding remarks. Some of the details of deri- . VYCOR GLASS

vations encountered in the above mentioned sections have

been collected in the Appendixes. A. Gaussian random field method

A number of choices for the quenched disorder distribu-
Il. LATTICE MODEL tion have been used in the studies of lattice models in the
context of the fluids in porous glasses. The simplest choice is

The lattice model Hamiltoniaf9—11] adopted in the cur- to take uncorrelated random distribution of solid sites:

rent study can be written as

PLt]=I1 [p&,,1+(1=p) &y al, @3)
H:_J%:} ninjtitj_,lLEi niti_y‘]% [n|t|(1—tl) i I I
wherep is the porosity.
+nt;(1-t)], (1) To incorporate the effects of the second length schle
associated with the pore size of the glasses, it is necessary to
wheren;=0,1 is the usual fluid occupation variable of the add spatial correlations in the solid density distributiRjn; ]
lattice gas, andj is the quenched random variable represent{12]. The disordered nature of the solid matrix implies that
ing the solid matrix configuration, equal to either 1 or 0O, the porous glass configurations can be efficiently obtained by
depending on whether the sités open to occupancy by the generating random fields in the three-dimensional space with
fluid, or blocked by solid, respectively. The double summa-constraints to their spatial fluctuations designed to match
tions run over all of the distinct nearest neighbor site pairsknown properties of the material. The uncorrelated random
with the fluid-fluid interaction strength setting the tempera- distribution (3) corresponds to the case where the only con-
ture scale of the model, and is the chemical potential. The straint to the solid density fluctuations is the microscopic
second interaction term in E¢L) accounts for the additional cutoff, whose length scale would be of the same order as that
attractive interactions between the fluids on the sites next tof a fluid molecule.
solid surfaces, whose strength can be varied by adjusting the Gaussian random field methods are based on the Cahn
parametery. The statistical nature of the quenched disordermodel of spinodal decompositidi3], where an auxiliary
{ti} is specified by the probability distributioR[t;], which  random field¢(r) is utilized to generate the physical density
can be regarded as a discretized form of the distributiorof the solid via the level cut,
function P[ pg(r)] of the solid matrix density fielghg(r).
The symmetry of the model as well as its relationship to ps(r)=0(d(r)— o), 4
other models become more apparent in the equivalent Ising
form obtained by the transformation into the Ising spin vari-where®(x) is the Heaviside step function. The lattice vari-
able,s;=2n;—-1, ablet; is obtained via the discretizatian=1—p¢(r;). The
field cutoff ¢, and the spatial correlations of the field can
be fixed by the requirement that E@) correctly yields the
statistical properties of the solid density distributions. Simi-
lar methods for generating long-range correlations based on
where irrelevant constant terms have been dropped, and thiee Fourier filtering method have been used by Madisal.
inhomogeneous fielb; is given by [14,15.
] For the Wecor glass, prominent characteristics of the ma-
_ terial include the porosityp=0.3, and the structure factor
h‘_(“+zy‘])/2+§(1/2_y)jz€i b (2b) I(g) obtained from the small-angle neutron scattering ex-
periments[16]. The porosity controls the average volume
Herezis the coordination number of the lattice, and the sumfraction of the void spaces, and the structure factor, with its
runs over the nearest neighbors of the site characteristic peak at=0.023 A"* [16], reflects the meso-
The Ising form(2) shows that the model can be thought of scopic domain structure. The two properties can be directly
as an Ising model with spatially correlated site dilution, andrelated to the cutoff$. and the spatial correlation of the

J
7'[:—2(2.> Sisjtitj_Ei hisitil (2a)
1)
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auxiliary field. A general form of the probability distribution 10°
of a Gaussian random fiel@(r) can be written as

1 1 ’ -1 ’ ! 106 B 7]
PLo(r)]=zex _Ef fdrdr d(NG H(|r=r"he(r') |,
©) Sl 7 -
v .
whereG(r) is the two-point correlation function of the ran- XD
dom field defined as ~
S 107 - .
G(r)=(¢(0)¢(r)), (6) =~
in whichr =|r|, the brackets denote the average with respect 10° + \\ .
to the probability distribution,
10_2 1 |||||||_2 1 1 |||||||l 1 1 ||||||0
(...);J’pd,p[d,(r)](...), (7) 10 ‘&'llo 10
qg(A’)

and A is the normalization constant in E¢5). Since the
amplitude of the auxiliary field is arbitrary, we s€&t(0)
=(¢(r)®)=1. The constraints can be written as

FIG. 1. Structure factor of Wcot(k) (solid line, in units of
cm™ 1) from Ref.[17], and the correlation function of the Gaussian

auxiliary field in Fourier spaceG(q) (dotted ling, calculated by
1—p={pgr)), (83 Egs.(9) with p=0.3.

1(q)cM(q), (8b)  level cut of the Gaussian random field on the cubic lattice
with spacinga was imported into an fcc lattice with the cubic

where l\7|(q) is the Fourier transform of the solid density lattice constanb=2a.

correlation functiorM (r)=(ps(0)ps(r)) — p2. Using Gauss- The parametera sets the_ sc'ale of resolutipn_ of the
ian functional integrals, it can be shown that the relations cafnethod, with smaller values yielding better description of the
be explicitly written ad 18] microscopic structure of the pores, whereas the overall com-

putational costs would be largely determined by the number

1 of cubic unit cells along each dimensidw For physical
1-p= Eerfo(qsc/\/i), 938 samples of fixed linear dimensioh=Na, better micro-
scopic resolutions achieved by smaléevalues require more
1 (1 dt . computational costs. Althougdnvalues affect the overall be-
M(r)zp(l_p)__f e ¢/ (gp) havior of the system quantitatively, qualitative behaviors
2m Jo(n\1—t2 were found to be similar with different choices. Systems with

] ) ) ‘a=30 A were used for most of the calculations reported,
Figures 1 and 2 show the correlation functions of the physiyith comparisons witta=15 A case in Secs. IV and V. Un-

cal densitypy(r) and the auxiliary fields(r) in Fourier |ags otherwise noted, system sizes whire 32 andN=16

space and real space, respectively. The solid density distribysy the mean field and Monte Carlo simulations, with results
tion can be obtained by generating sets of random complex

numbers ¢(q) with zero mean and variancél ¢(q)|?) , :
=G(q) subject to the constraint

(q)* =p(—q) (10)

on a cubic lattice with lattice spacing such thatL=Na.
Fourier inversion is then performed with the fast Fourier
transform[19]. Due to the errors arising from discretization,
filtering the resulting fieldp, at the cutoffé. given by Eq.

(9a) does not give the accurate porosiyoriginally in-
tended. We instead adjusted the cutoff value for each realiza-
tions such that the level cut yields the porogity 0.3.

Figures 3 and 4 show the solid surface visualized by in- 05 ' 2(')0 '
terpolations of the level cut, Eq(4), and the two- r (‘&)
dimensional cross sections on the lattice for two different
choices of the lattice constaat=30 A anda=15 A. The FIG. 2. Real space correlation functions of the physical density
face centered cubigcc) lattice has been used throughout the M (r)/p(1—p) (solid line) and the auxiliary fieldG(r) (dotted
work described here. The solid density field obtained by thédine).

G(r), M(r)

|
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FIG. 5. Percolation probability as a function of the porogty
Diamonds and rectangles are for the uncorrelated random distribu-
tion on the simple cubic and fcc lattices, respectively. Circles are for
the VWcor glass distribution generated by the Gaussian random field
method witha=30 A. Systems wititN=32 were used in all cases.
Symbols represent the fraction of percolating realizations among
500 disorder samples.

FIG. 3. Solid surfaces generated by the Gaussian random field ) ) )
method. The linear dimension of the cubic box corresponds to A convenient measure of the percolation property is pro-

=N,a=960 A, whereN,=64 is the number of lattice grids used Vided by fy(p), the fraction of the disorder realizations in
for each dimension, and=15 A is the lattice spacing. which there exists at least one path starting from a site within
one face of the latticex=0) and reaching the other face
. =L). The paths are allowed only on sites for whith
avergged over more than 10 d|sorder_samples. We do n(Sjl. I):or a gi?/en lattice with a set }(l)f disorder realizatiions
c_onS|der critical properties of the model in this paper, e_\nd th;{ti}, fo(p) can be easily calculated by initializing spins in
size of the system used in the Monte Carlo simulations ighe \gids as, = — 1 for a given realization, growing clusters
expected to have little effect on the qualitative behavior agqm the sites ak=0 by recursively visiting all neighboring
long as it is considerably larger than the typical pore sizes.gjiag witht; =1 ands; = — 1 as in the Wolff cluster algorithm
for the Monte Carlo simulatiof20,21], while uncondition-
- - ally flipping spins within the cluster. A realization is identi-
B. Percolation properties fie)c/j asp F[))erg(]:ol'zzt[ed when the other face is reached at any time,
An important requirement for a realistic model of the W- whereas if all possible paths have been searched without
cor glass matrix is the bicontinuity of the pore and solidreaching the other end, the realization is identified as non-
regions throughout the three-dimensional space. Dependingercolated. The probabilit§i,(p) is obtained by calculating
on the spatial correlations of the pore space, there generaltfie fraction of percolated realizations within the ensemble of
exists a percolation threshold as the porosity is increased@he total disorder realizations.
below which most of the pores are statistically disconnected, The percolation thresholg, is defined as the value of the
preventing fluid adsorption throughout the material. porosity where the probability, makes a discontinuous
jump in the thermodynamic limit. Threshold values have
been determined for a variety of latticE22] for the uncor-
related site disorder, E@3). The value for the simple cubic
lattice is p,=0.31, indicating that the pores in the simple
cubic, uncorrelated random matrix at the porosity of VWcor
do not percolate the space well. Higher coordination number
facilitates percolations, anpl.=0.20 for the random matrix
on fcc lattice. Figure 5 shows the percolation probability
f,(p) calculated for the random and Wcor glass matrices on
the cubic and fcc lattices. The presence of spatial correlations
significantly lower the percolation threshold, and the poros-
ity p=0.3 is well above the threshold for the Wcor glass
FIG. 4. Two-dimensional cross sections of the lattice variableconfigurations generated by the Gaussian random field
configurationdt;} on fcc lattice, with spheres representing the sitesmethod.
wheret; =0 (solid). The left- and right-hand side images were gen-
erated witha=30 A, N=32, anda=15 A, N=64, respectively, IV. MEAN FIELD THEORY
where 22 andN are the size and number of the cubic unit cell along
each dimension. The physical length of the box.is 1920 A in
both cases.

Mean field theory provides important qualitative insights
for Ising-like lattice models, especially for disordered sys-
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tems. We first consider the symmetric cages 1/2, for a)
which the Ising form of the model, E@2a), is more conve- ~0.6985 ~0.69326 :
nience. The free enerdy is given by the quenched average i
(Rl B | B
where(- - '>tEE{ti}(' --)P[t;] and —0.6995 -0.69330
— . — L P 1 | I N
e Frll=7[t]=2 e A", 12 07000 5 03 01 o1 03 05 02 o1 00 o1 02
{si} m m
in which 8= 1/kgT as usual. A generalized form of the mean FIG. 6. Distributions of the mean field free energy minima near
field theory[23] (Appendix A) gives the critical point fory=0.5 with a=15 A; (a) T*=0.8, (b) T*
=0.9.
= - Fa . .. e e .
Z[ti]_Z; e Fle, (13 To search for multiple minima, the initial conditions of
iteration were chosen by randomly assigning magnetizations
where by Gaussian distributions around various mean and vari-
ances, which were also chosen randomly. Below the critical
1+m® 1+m® 1-m® 1-m{ point T* <Ty , whereT* =T/T, is the reduced temperature
,BFa=2i s N——+——Ih— defined with respect to the bulk critical poifit,,, the solu-

tions are enveloped by the “maximal solutiong3], whose
BJ _ N magnetization has the largest magnitude, and are the two
4 E m; m; _2 Bhim; (14) global minima of the distribution. At temperatures away
from the critical point, the free energy difference between the
is the free energy of the minimum, satisfying the mean Maximal solutions and the rest of the minima is large, caus-
field equation ing expressior{13) to be dominated by the term correspond-
ing to the maximal solution. As we approach the critical
region, the free energy difference becomes smaller, and the
: (15  contributions from the other solutions incred&égy. 6).
To calculate the equilibrium magnetization from E#j6)
elow the critical point, the summation over the minima

me=t; tan}{ (BII4) X, m*+ ph;

jei

For a pure system such as the Ising model, there usuall d q b ioned i h /2
exist one or two minima of Eq(14), corresponding to the ound needs to be partitioned into two phases. yerl/2,

high temperature or broken symmetry phases. In contrast, iifl€ Symmetry naturally dictates the partitioning img>0

the disordered systems such as the current model, the me@AdM.<0. The average magnetization curve calculated by
field equation potentially possesses a large number of met&=d- (16) near the critical point is shown in Fig. 7, along with
stable minima, which are represented by the indexEx- that of the maximal solution. An exhaL_Jstlve search for the
pressions for the macroscopic observables directly followMnima even for a moderately sized lattice would be a daunt-
from the free energyl4). In particular, the average magne- Ing task, and the we|ghted_ average _shown In F'g'. 7 Includes
tization (density in the fluid languageis given by m= only a part of the nonmaximal solutions. The residual mag-

—(oF[t;)/oh;)=(m,),, where netizations near the critical point, similar to the finite size
| I 1 ’
0.9 T T T T
S mee 5
miza—. (16) i
> e e 08 -

The local mean field equatidil5) can be solved numeri-
cally on the lattice with a given realization of the disorder 07
{t;} by starting with an initial guess dfm{} and iterating
until convergence is achieved. Different solutions are ob-
tained depending on the initial condition of the iteration. 0.6 : : .
For the symmetric casg= 1/2, the model reduces to the 0.0 02 04 0.6
site diluted Ising model, where it has been well established m
that the phase transition persists for the disorder realizations F|G. 7. Average magnetization versus temperatureyferl/2
that percolate the spa¢é4]. The dilution lowers the critical anda=30A. A single sample witiN= 32 was used. Circles con-
temperatureT. which approaches zero at the percolationnected by the solid line are the weighted average calculated by Eq.
threshold. (16), and the dotted line corresponds to the maximal solutions.
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FIG. 8. Loci of maximal solutions foy=1/2 fora= 15 A (solid
line), a=30 A (dotted lin@, anda=50 A (dashed ling

effects typically seen in Monte Carlo simulations, result from

the incompleteness of the numerical solution search that un- ] ) o )
derestimates the contributions of the nonmaximal solutions F!G- 9. Mean field adsorptiotsolid lineg and desorptioridot-
to the weighted average. ted lineg isothermsp for y=0.5 (top) andy=1.0 (bottom). From

Although the numerical search for the set of local freeghg Ieft;oor(is%h;.T*le(.)s, 0.6, at!‘d |0'75 foy=0.5 andT* =04,
energy minima described above cannot be expected to be™ and 9.65 foy= 1.0, respectively.

complete even for small systems, it can uncover important

gualitative differences in the free energy landscape of the w_ t (19)
system for different conditions. From Fig. 6, for example, Pi R
one can expect that in the thermodynamic limit, the system 1+ex —ﬁM—BJjEEi (pj+y—yt)

properties could either be dominated by the few minima, or
be influenced by the presence of rugged landscape charactgjsing £q.(18), the locus of maximal solutions for a given
ized by minima whose number increases exponentially Withemperature is easily found by numerical iterations. We start
system sizes. A systematic study of the number of solutiongit, wu=+o and change the value @f in either directions
with increasing system size would be helpful, although sucly, smaji increments, while determining the average density
a study would necessarily be limited to very small systems,
for which the quality of statistics for the glass representations 1
would be rather poor. P=<N— > Pia> , (19

The location of the critical poinT} depends on the rela- s t
tive degree to which the void space is percolated, and there-

fore on the parametea, which determines the typical pore \évr?:ﬁc’\; Isottgr?tigjltsglzgrsnsg r?ljrﬁgﬁiavlvﬁgr:at}dﬁfc% ?I_ahcg
size in units of the lattice constant. &s—0, each pore re- P >l

duces to the bulk fluid, and*—1. Figure 8 shows the previous set of local density values satisfying the mean field
’ (o] .

. . ! equation is used as the initial guess for iteration for the next
maximal solut|on'boundary for threg different valueszof value of chemical potential. This locus corresponds to the
The effect of_con_fmer_nent fa=10 A is seen to be small for_ adsorption isotherms of fluids measured in experiments. The
the symmetric site diluted model in the Wcor glass matr_'x‘change in chemical potential as the control parameter in-

f the effective d in sizd/a i its of the latti Huces the transitions between neighboring local free energy
or the efiective domain sizé/a in units or the fatlice con-  yinima Figure 9 shows a typical set of adsorption isotherms

stant agrees with the previous study of the site diluted IsinqOr y=0.5 andy= 1.0. For the symmetric case, the hysteresis
model on Wcor-like glass matrices using Monte Carlo S|mu-gap retains much of the typical behavior seen in the pure

lations[25]. systems, an exception being the smoothidige to disorder

. The Ising symmery no longer exists whenr 1/2, and it of the discontinuous jump in density around the spinodal of
is more convenient to use the lattice gas form of the modelpure systems

The mean field equation analogous to Ed<l) and(15) for As we turn on the surface fields by increasingrom y

the grand potential functional reads =1/2, the hysteresis region develops the characteristic asym-
metry seen in experiments of fluid adsorption in mesoporous
BQ= [ptInpi+(1—pHIn(l—pM)]-Bu, pt glasses. Whereas the adsorption branch remains smooth, the

i i desorption branch shows a precipitous drop in density in a
narrow range of chemical potentials, which tends to become
_EJZ [plpt+ypf(1—t) +ypf(1—t)], (17 ~ more pronounced agincreases and temperature decreases.
(ij) In contrast to the symmetric case, the mean field free energy

minima were found to show broader distributioffsg. 10,

where the densitpf‘zE{ni}nitie*ﬁH satisfies and the maximal solutions no longer dominate.
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FIG. 10. Distributions of the mean field free energy minima near coexistencg=f6x7 below and above the critical poir®) T*
=0.4, Bu=—5.623 andb) T*=0.6, Bu=—3.687.

The interior of the hysteresis region shown in Fig. 9 con-bimodal character near coexisteriEgg. 10. The summation
tains many local minima of the mean field free enefthe in Eq. (16) was partitioned into two “phases” for which,,
number of minima would be essentially inifinite in the ther- <p. andp,>p., respectively. The critical density., ini-
modynamic limi}, revealed by the myriad of intermediate tially guessed, can be refined to achieve the overall consis-
solutions to the mean field equation found when we traverseéency of the coexistence curve. The grand free energy of
the control parametex space in various directions, produc- phasei is defined as
ing the so-called “scanning curve$7]. The gradual cross-
over from the conventional two-phase coexistence of bulk
fluids with the free energy characterized by the two minima
separated by a barrier proportional to the interfacial free en-
ergy, to the strongly hysteretic behavior due to the large mulwhere the sum is over all local minima of the grand potential
tiplicity local minima is expected to occur as we incregse associated with phade At coexistence the grand free ener-
from the symmetric value. For the caseyof 1/2, the free gies of the two phases are equal. The corresponding phase
energy barriers between local minima would mainly be duedensities are given by
to the entropic factors associated with the disordered ar-
rangement of confining blockers, and therefore relatively (i):eﬁﬂ(i)z e B
small. Little qualitative difference is expected in the noncriti- p aci Pa '
cal phase behavior compared to the pure system limit, except
the depression of the subcritical phase separations to lower Approximate phase coexistence densities for various val-
temperature regimes. ues ofy are shown in Fig. 11. Shown together are the bound-

As the field is turned ony(>1/2), the barriers would aries of the hysteresis region, the two densities at which the
increase due to the attractive interactions between solid suhysteresis gap opens and closes. For the site dilutedycase
faces and the fluid inside the pores, developing the locaf 0.5, the hysteresis boundary remains close to the coexist-
ruggedness of the free energy landscape. The increasing fre@ce curve, and as one lowers the temperature, the onset of
energy barriers and the resultant hysteresis appears superilysteresis occurs near the critical point, a feature commonly
posed to the global bimodal feature of the free energy, whiclobserved in pure systems.
in turn becomes eventually overshadowed by the field ef- As the surface field increases, the global two-phase coex-
fects, and for strong fields the two-phase coexistence noistence is suppressed to lower temperatures, whereas the
mally encountered in bulk fluids is expected to be largelytemperature regime where hysteresis begins to develop re-
irrelevant. Such qualitative behavior is also observed in thénains nearly independent ¢f Hysteresis and equilibrium
random field Ising model, where there exists a critical fieldphase coexistence develop at two distinct temperatlifes
strength above which no phase transition exig&27. and T., respectively. In the temperature regimieg<<T

To confirm such trends of the equilibrium phase coexist-<T,,, the free energy landscape is dominated by multiplicity
ence within the mean field theory, the hysteresis region wasf local minima without any macroscopic phase separation.
first identified by calculating the locus of maximal solutions The nontrivial symmetry breaking characterized by the ap-
(adsorption/desorption isotherires in Fig. 9, and the distri- pearance of rugged free energy landscapg,das analogous
butions of the free energy minima were searched for a numto the replica symmetry breaking transition observed in the
ber of chemical potential values inside the hysteresis regiormodels of spin glassef28]. As the Thouless-Anderson-

At sufficiently low temperatures, the distribution shows thePalmer approach for spin glasses, the local mean field theory

Q0= —kgTIn

2 e_BQa

ael

: (20

(21)

041207-7



H.-J. WOO AND P. A. MONSON PHYSICAL REVIEW E67, 041207 (2003

a) y=0.5 b) y=0.7 ) y=10
10 ————7——1— ‘ 10 ——————— : 10 —mr———F——+
0.8 038 = 08 - —
Ol | | |
L 'o"/o QQ 06 o O .%O
— 3 o - = o —
T* 06 T* 06 " 3 T 0. o
L o o L o o
o o) L
04 04 ks /_\ 04 L o )
o d ; :
[© ro q
D N
02 - 02 . 02 © <
L | s | L | L | L L | s | L | s | L s | L N | L | I
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
p p p

FIG. 11. Mean field phase coexistence densiffiied circles, solid linesand the boundaries of hysteresis regiopen circles, dotted
lines) for three different values of. Lines are guides to the eye.

adopted to the present model readily reveals the signatures ahd investigate the accuracy of the qualitative trend of equi-
the rugged free energy landscape. librium phase behavior observed in the mean field analyses
Although the first-order phase transition and the two-for smally—1/2.
phase coexistence characterized by the bimodal free energy As in the mean field theory,=1/2 case of the model can
retains its global feature at lower temperatures yorl/2, be studied by a straightforward application of the methods
each of the many free energy minima shown in Fig. 10 ardor pure systems. The cluster update algorithm due to Wolff
separated by finite free energy barriers. The probability of20] efficiently eliminates critical slowing down, and can be
crossing these local barriers and ultimately achieving thepplied to the site diluted case by allowing cluster growth
global equilibrium by phase separating into two phases indionly on the vacant sitg®5]. Due to the Ising symmetry, the
cated by the coexistence conditions in Fig. 11 would becomsimulation samples two phases connected by spin flip sym-
exponentially small as temperature decreases. Therefore, itigetry with equal probability belowl’ , and coexistence
expected that the equilibrium phase transitions shown to pedensities away from the critical point can be easily obtained
sist fory>1/2 in Fig. 11 would be largely unattainable, and by calculating the average of the magnitude,
therefore practically irrelevant in experimental situations.

p(l)zw#, p@ =1 pd), 22

V. MONTE CARLO SIMULATION

The fact that the local mean field method captures manyvhere the brackets represent the thermal average.
of the phenomenologies observed in experiments, such as In addition, we consider the generalized free energy
hysteresis and scanning behavis7], suggests that thermal Bf(p) for a given sampldt;} defined as
fluctuations, ignored in the mean field theory, generally are 1
in fact not strong enough to allow efficient barrier crossings _ _ = g — BH
in experimental time scales. Monte Carlo simulations of the exil Nt (p)] {% 5( Ns 2 nit p>e - 23
model can provide a more quantitative understanding of the
effect of fluctuations, or equivalently, typical barrier heightsFor a pure system, the free enemg¥(p) as a function of the
in the free energy landscape. Extensive Monte Carlo simulaerder parameter corresponds to the Landau-type free energy,
tion studies have been performed for the random field Isingvhich changes its shape into bimodal form as we lower the
model, mainly focused on the study of critical phenomenaemperature across the critical point. In simulations, it can be
[4,25,27. Viewed in terms of the lattice gas representation ofcalculated by collecting histograms of density values for a
the current model, such simulations correspond to the latticaumber of discretized bins, and taking the logarithm of the
analog of the grand canonical simulations of molecular modsdistribution. Figure 12 shows the free eneg@i(p) near the
els, in which thermal equilibrium is sought by creating andcritical point for the symmetric casg=0.5. For the disor-
destroying molecules with a specified chemical potential. dered cases, the generalized free energy, as the projection of
The presence of the rugged free energy landscape and titee full free energy functional into the bulk density plane,
resultant glassiness typically pose formidable challenges toan serve as an analog of the mean field counterpart shown
achieving equilibration in Monte Carlo simulatiof®l]. A in Fig. 10. It allows one to locate first-order phase transi-
variety of algorithmq21,27,29 have been developed to fa- tions, if any, in the absence of the Ising symmetry.
cilitate local barrier crossings, while still enforcing ergodic-  We again proceed to the asymmetric case by considering
ity and detailed balance, and efficiently simulate disorderedhe adsorption/desorption isotherms. Local free energy barri-
systems. We limit our scope in this section to two issues. Wers encountered in relaxations responsible for the slow dy-
show that such a dramatic slow down of the dynamics alsmamics observed in experiments also severely impede equili-
occurs in the current model as the surface field is turned orpration of the single spin flip(and to a lesser extent,
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dashed lines are fof*=0.52, T*=0.53, andT* =0.55, respec- [3”

tively, whereT* =T/T,, is the reduced temperature with respect to

the bulk critical pointT,=2.449/kg [30]. The absolute values of FIG. 13. Adsorption/desorption isotherms from Metropolis

the free energy have been shifted such b0 for p=0.5. Monte Carlo simulations witlr,=500 GMCS.y=0.5, and 0.7 for
the top and bottom panels, afid=0.45, and 0.5, from left to

cluster updateMonte Carlo simulations. Noncritical slowing 1ght.

down of equilibration in the Metropolis algorithm thus ) - ] ]
closely reflects the glassiness in real dynamics associatefoduce hysteresis near the critical region, whereas turning
with fluid adsorption, and the hysteresis region can be 109N the surface field would effectively quench thermal fluc-
cated by identifying regions where the equilibration is un-tuations. The hysteresis observed fgr~0.5 would be
usually slow. A more quantitative dynamical interpretation ofMmainly due to the presence of local free energy barriers

the relaxation in terms of Monte Carlo simulations is dis-rather than critical slowing down. N
cussed in Sec. VI. To uncover the fate of the first-order phase transition of

In pure Systemsl the relaxation time of the Metropo”sthey: 1/2 case as one turns on the surface f|e|d, we calculate

simulation diverges with a power law near the critical point,the grand potential per sitgw(p) at a number of chemical
whereas it remains relatively small in the noncritical re-potential values within the hysteretic regime. The presence
gimes_ Mean field ana|yses discussed in the preceding Se@f surface ﬁ6|dS, and the reSUlting local barriers Significantly
tion suggest that for the present model, as the field strength i§Wpede equilibrations of the Monte Carlo simulations even
increased, signatures of the ubiquitous free energy barrief@r smally—1/2, and a straightforward calculation of the
would appear as widespread slowing down of relaxationdree energy as in Fig. 12 becomes difficult. We get around
away from the critical point. Such onset of nontrivial hyster-the difficulty by performing the umbrella samplifigl]. The
esis in fact occurs via a gradual crossover within a range oflensity range is divided into a number of windows of width
temperatures. The analog of the hysteresis boundaries frodp, and simulations collecting histograms are performed
the Monte Carlo simulations can thus be obtained by scanwithin each windowp,<p<p,+ dp via a non-Boltzmann
ning chemical potential values gradually in either directionssampling such that any move that puts the system outside the
as in mean field theory, but only allowing equilibrations for awindow is rejected32]. Pieces of the free energy curve from
relatively short time period,. The time scaler,, given in ~ €ach window are combined together by shifting the absolute
terms of the spin flip attempts per sites or Glauber Montevalues such that the free energy becomes continuous at the
Carlo Stepg{GMCS)’ would have to be |arger than relaxation window boundaries. At coexistence, the two minima ob-
times of noncritical pure systems, while small enough suchained would be equal in free energy values. Given an initial
that barrier crossings, if any, would not occur appreciablyguess of the coexistence chemical potential, reweighting of
Figure 13 shows the Monte Carlo analog of the sorptiont_he free energy can be used to locate the coexistence condi-
isotherms fory=0.5, andy=0.7, where the equilibration ton via
time was taken as;,=500 GMCS.

The qualitative trends observed in adsorption isotherms N } ,
obtaineg by Monte Carlo simulations closel)r; follow those polpip )_Bw(p”u)_in“ B(w' = p)pn+ const
within the mean field theory. However, the boundaries of the (24
hysteresis region are less clear cut than in mean field theory,
and the onset of the nontrivial hysteresis due to the multipld=igure 14 shows the free energy near coexistenceyfor
free energy minima occurs within a range of the parameter0.6 andy=0.7. By comparing the free energy profiles for
space without any sharp transition. Approximate hysteresithe two cases, we observe that increasing the surface field
boundaries are shown in Fig. 15 for symmetric and weaklyintroduces local “ruggedness” into the landscape, which
asymmetric cases. Fogr=0.5, strong thermal fluctuations gradually overshadows the global bimodal character of the
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a) y=0.6 b) y=0.7 VI. DYNAMICS OF RELAXATION
wE T T 10 A. Nonconserved dynamics
| \»_«J oL The disappearance of the two-phase coexistence as the

field strength is increased, as shown in Fig. 15, implies that
for fluids in mesoporous glasses, thermodynamic driving
force for macroscopic phase separation vanishes. Therefore,
the properties of adsorption and desorption of fluids into a
porous glass sample in contact with gas reservoirs, rather
than phase separation dynamics of fluids that has been often
) S T R N 40 Lo 111 studied in relation to porous materigB3—35, become more
00 02 04 06 08 10 00 02 04 06 08 10  (glevant. In this section, we consider the dynamical aspects
P P of the density relaxation in a more quantitative fashion with

FIG. 14. Grand potential landscape near coexistenceyfor Monte Carlo simulations. _
=0.6 andy=0.7. Temperature and chemical potential values are The standard Metropolis algorithm for the Monte Carlo

(T*,Bu)=(0.4—6.5285), (0.45-5.791), (0.5-5.1953) fory  Simulations can be regarded as an implementation of a par-
=0.6, and (0.4-6.903), (0.43-6.4065), (0.45-6.108) fory ticular dynamical model of Markovian stochastic processes,

=0.7 from the bottom to the top. The absolute values of the freevhich yi?|d5 realizations of the nonequilibrium average of
energy are arbitrary. the density

pi(t)=2 niPyln;;t] (25
two-phase coexistence, while lowering the critical tempera- {ni}
ture. Coexistence densities located as the two minima of the . , _
free energy in Fig. 14 are shown in Fig. 15. Although themeasured in units of GMCS such thaj=1 GMCS, where

A . . . Pm(nq, ...,ny;t) is the probability of n;(t). A coarse
slow equmbrgtlon of the simulation does nqt a!low one tp gograined version of the stochastic dissipative dynamics in or
further into higher values of —1/2, the qualitative behavior

. ! < near equilibrium can be described by the Langevin-type
closely agrees with the mean field results shown in Fig. 11equation(modeIA) [36]

The relative “smearing” of the transition temperature
in simulations compared to the mean field case indicates that d 4
the glassiness develops within a range of temperatures rather Ep(rvt) = X7o0
than via a sharp transition, and barrier crossings do happen
within the crossover regime. However, the probability forwhere y=dp/dBu is the compressibilityF is the Landau-
crossings would become exponentially small as temperatur@inzburg-type free energy functional of the form of Etg4),
is lowered away from the crossover, and the equilibratiorand #(r,t) is the stochastic random force assumed to be
needed to achieve macroscopic phase separations is expecMdrkovian:
to be unavailable foly=0.7. Similar situation is also ob-
served in spin glasses, where the mean field theory with in- . 27 ) ,
finite range interactions predicts the spin glass transition {7(F:t))=0, (n(r,t)7(r’,t )):75(r—r )o(t—t").
temperature below which free energy barriers between (27)
minima become infinite in the thermodynamic limit, whereas
such idealization is thought to be only partially reflected in  Glauber dynamics or modeA (26) provide qualitative

—%ﬂ- n(r,t)|, (26)

op

short ranged model28]. descriptions of the nonconserved order parameter relaxation
a) y=0.5 b) y=0.6 ) y=0.7
0.6 — 1 T 1 T T 0.6 L L 0.6 — 1 1 T 1
o] Q
o °
o o
T* o5 L o o
¢ »—?
04 o1+ 1 11 04 Lendt w1 v 11 0.4 i AN T\
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
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FIG. 15. Phase diagrams from Monte Carlo simulations. Filled and open circles are the coexistence densities, and the approximate
boundaries of hysteresis region, respectively. Lines are guides to the eye.
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Bu crossover into the strongly hysteretic regime begins to hap-

pen for a relatively smally—1/2, allowing us to achieve
FIG. 16. Density relaxations in Glauber dynamics §or0.7  equilibrium with the conventional Wolff algorithifshown as
and T*=0.5. The top panel shows the adsorption and desorptioffilled circles in Fig. 16 and examine the onset of activated
isotherms(open symbols connected by dotted linebtained with dynamics and glassiness with relative ease.
=500 GMCS, and the equilibrium isotherffilled circles with Since the equilibrium conditions are known, a well-
solid lineg. The bottom panel shows the integrated relaxation timedefined measure of the relaxation rate is provided by exam-
obtained from the time correlation function. ining the time correlation function of density fluctuations

around the equilibrium value. Typical density time series for

dynamics near equilibrium in systems such as random fielgl,q gifferent conditions along the equilibrium isotherm are
Ising spins or spin glasses. For fluids in porous materials, thghown in Fig. 17. The activated nature of the density fluc-
relaxation rate obtained can be regarded as a lower bound {Q4ions is clearly seen, which becomes more pronounced for
the actual rate since mass conservation, in general, furthefper gensities, where the system is typically stuck in a
restricts density relaxations. In particular, it is expected thajyca| minimum of free energy for relatively long time peri-

the strongly hysteretic regimes as shown in Fig. 13 whergq and makes infrequent transitions to neighboring minima
Glauber dynamics show unusually slow relaxation rates,,,qe possible by occasional barrier crossings.

would be paralleled in the conserved case with even slower 114 evolution of the relaxation time of Glauber dynamics
rates. _ 76, defined as the integrated autocorrelation time of the den-
_ Nonconserved order parameter dynamics of the randomgiy, correlation function calculated from the time series is
field Ising model shows behavior qualitatively different from goyn in Fig. 16. It is seen that the relaxation time increases
the ordinary critical dynamics of pure systems. The presencg, ,nentially as one gets inside the hysteresis region. The
of random fields, while pinning down thermal fluctuations, owing down of Glauber dynamics is due to the increasing
create local frge energy barrlgrs, 'and'changes the USURble that the activated barrier crossing plays in equilibration,
power Ia_lw scaling of t_he relaxation time into the Arrhenlus-not to an underlying second-order phase transition as one
type activated dynamids37] usually encounters in pure systems. The hysteresis one ob-

ra~exg A(éla)"], (28) serves in adsorp"[ion experiments is accqrgiingly .dFle to the

presence of multitudes of free energy minima arising from

Whereé‘ is the correlation |ength an¢ is a dynamica' expo- the disorder, and the SyStem’S |nab|l|ty to cross the local
nent. The exponential dependence of the relaxation time oRarriers within the experimentally realizable time scale,
temperature in Eq28) provides a natural conceptual expla- father than the “conventional” type of hysteresis and first-
nation of the glassy dynamics and hysteresis seen in expef@'der phase transition, as has often been assumed previously,
ments on fluids in disordered pores, and is consistent withhere two free energy minima corresponding to the low and
the presence of a large number of local minima in the fredigh density phases compete with a barrier between them
energy landscape revealed by the mean field treatment. ~ Proportional to the interfacial contribution.

To examine the nonconserved dynamics of the model, we
consider the hysteretic regime above the first-order phase
transition fory=0.7 andT* = 0.5, shown in Fig. 16. As seen As discussed in the preceding section, Glauber dynamics
in Fig. 15, the condition corresponds to the region where theloes not conserve mass, and therefore only provides indirect

B. Conserved dynamics
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guidance on real dynamics of fluid adsorption in porous - <<
glasses. Huse has considered the effect of order parameter i
conservation to the activated dynamics of the random field
Ising model[38]. It was argued that there exists a crossover i
wave vector that distinguishes the diffusion limited and the <<
activated dynamics regime. In terms of the dynamic structure
factor for a wave vector corresponding to length scales larger
than the typical pore sizes, one initially observes a fast ex- FIG. 18. Kawasaki dynamics simulation setup. Both the reser-
ponential decay of correlations due to diffusion as in normaloir and the system are filled with a realization of the porous glass.
fluids, followed by a slow and stretched residual ComponenFe”OdiC boundary conditions apply to tkeandy directions. Fluids
that corresponds to the activated dynamics between locd] the res.ervoirs .and in the §ystem are simulated by Glauber and
minima in free energy landscap89]. The latter regime is Kawasaki dynamics, respgctlvely. The interfaceg-ab andz=L
characterized by a broad distribution of relaxation times in@"® updated by both algorithms.

logarithmic scale, consistent with the activated dynamicsb . : .
picture, Eq.(29). ehaviors such as glassy dynamics. Once obtained, each

The presence of the dynamical crossover between the inp_pmponent represents the time evolution of the average den-

tial diffusion-limited regime and the subsequent activationSity Of @ volume element with linear dimensidn=_27/q
dominated regime provides a natural explanation for the pheVith respect to the uniform time scate By renormalizing
nomenology observed in typical adsorption experiments of'€ Physical time scale with Eq31), which amounts to a
fluids [40], where one encounters relatively rapid relaxationscontraction, the equation of motion satisfied by the original

of the fluid density in response to a change in external consolution |s_transformed into Eq$26) and (27) with t re-
trol parameters such as vapor pressure of the gas reservdaced byt .
followed by a “quasiequilibrium” stage where the system  Physically, the rescaling factor
remains essentially unchanged over periods of time many
orders of magnitude longer than the initial time scale. To L?
describe such relaxation behavior with the current model, we TD:47T2D (32
consider in this section a quantitative connection between the
nonconserved Glauber dynamics and conserved dynamics
fluids.

The analog of model equation(26) that includes mass
conservation law is the modBI[36] equation, which can be
written in q space as

Resv. System Resv. Na

0 L

ff Eq. (31) corresponds to the diffusive relaxation time of the
volume element needed to produce an elementary fluctuation
in the bulk density with mass conservation. By contracting
the time scale into a unit ofy, we are “relaxing” the con-
servation law and treating the system in an effective grand
canonical ensemble. In practice, E§1) allows one to esti-

= —Dqu[,B,ZL[pq]Jr 7q(H)], (299  mate the conserved dynamics from simulations of noncon-
served dynamics, which are less demanding in general. As a
special case, one expects that the characteristic relaxation
time of conserved dynamicsy, can be estimated by

g
at

where D is the diffusion coefficient, aanL is the Fourier
transform ofu[ p]= 6F/Sp(r,t). The random field is char-
acterized by

v«=Tp7c/tp- (33
< 77q(t)> =0,
C. Kawasaki dynamics simulation
by 2 , A general quantity that can be examined to study the con-
(g7 (1 )>_qu2 Oqq S(L=1"). (30 served order parameter dynamics of fluid density is the dy-

namical structure facto(p_4(0)p4(t)) measured in light
The mass conservation law, reflected by the presence of trggattering experiments. However, to calculate the structure
q? factor (—V? in the real spadein Egs. (29) and (30, factor for a wave vectoq with conservation law from simu-
would significantly slow down the already slow glassy relax-lations, it is necessary to consider a system much larger than
ations of nonconserved dynamics of the model, and it would-=2/q, such that appreciable density fluctuations become
be useful to be able to estimate the time scales of conservgabssible in the volume element of sikewith the rest of the
dynamics from Glauber dynamics simulations. In fact, com-volume serving as the reservoir.
paring Egs.(26), (27), and (29), (30), we note that a We instead choose to mimic a typical situation in adsorp-

g-dependent time rescaling tion experiment§41], depicted in Fig. 18, where a system
o with linear dimensiorL is in contact with grand canonical
tq=Dgtot (31)  reservoirs az=0 andz=L kept at a chemical potential, and

probe the time dependent response of the density inside the
puts the modeB equations into an effective modalform.  system reacting to a sudden change in the external control
The density elementp,(t)} in Eq. (29) are coupled to one parameter. Periodic boundary conditions are used tordy
another via the nonlinear functional generating nontrivial ~ directions, reducing the spatial variations into one dimen-
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sion. A realization of Wecor glass spans both the system and a) b)
reservoirs, whereas fluids in the system and reservoirs evolve ¢4 — : : : I
with Kawasaki and Glauber dynamics, respectively. Similar I r
techniques have been used by Leung and L{#2} in the 03 eeetin
study of water cavitation dynamics in slit geometry of hy-
drophobic surfaces. P oz
In the simulation, one MC8Monte Carlo stepfirst con-
sists of a random selection of a fluid particle inside the sys-
tem, and attempting to move it into one of its vacant neigh-
boring sites, which are repeat®y, times whereN, is the
total number of particles inside. It is followed by the Glauber 00
step, in which a void site in the reservoirs are chosen for
updatingNg times, where\; is the total number of sites with
t;=1 in the reservoirs. Care must be taken in the treatment of FIG. 19. () Time evolution of density profile foy=0.7, T*
the interfacial regions a=0 andz=L not to introduce any =0.8, Bu=—3.6, py=0, p.=0.31. Thez coordinate shown is in
artificial bias into the dynamics of the total system. The two-units ofb=2a. Symbols and solid lines are the Kawasaki dynamics
dimensional planes of interfacial regions were separate@imulation and the ideal diffusion profile at=1, 1x10° 1
from the rest, and as the third step of the MCS, sites with< 10" 2>2<1041 5x10%, and 110> in MCS, respectivelyD =5
t;=1 were chosen at random within the planes, Glauber upx 10 ° b*’MCS. (b) Bulk density in the Kawasaki dynami¢solid
dating was attempted, and when it resultedhjirr 1, a sub- line), ideal diffusion[Eq. (36); dotted ling, and the Glauber dynam-
sequent diffusion attempt was made. In addition, the diffu-/cS "escaled by /to with to=1 GMCS.
sive moves of fluid particles inside the system into the
boundary planes were followed by Glauber updates. ing regime given by Eq(37) allows one to extract values of
To initiate relaxation dynamics, the system and the reserthe diffusion coefficient of fluids in Wcor from simulations.
voirs are first equilibrated with Glauber dynamics, each at We first consider a typical behavior away from the hys-
two different chemical potentials such that the initial uniform teretic regime, where a normal fluidlike behavior is expected.
density profiles ap, and p.,, respectively, for the system With a single minimum dominating the free energy land-
and the reservoirs are obtained. Time is set-a® and the scape, density relaxations would be essentially diffusion lim-
total system evolves via the composite algorithm describedted, described well by the ideal diffusion result, E§5).
above. The dynamical relaxation is probed by measuring th&igure 19 shows the time evolution of the density profile
one-dimensional density profile, inside the system as well as the bulk density for a nonequi-
librium relaxation aty=0.7, T*=0.8, and Bu=—3.6,
— _ p(z,t) = po where no appreciable hysteresis is found in grand canonical
p(z1)= Po—po 34 Simulations. The relaxation behavior closely agrees with the
prediction of the ideal diffusion with the diffusion coefficient
with p(z,0)=0 andp(z,=)=1. If one assumes that the dy- D obtained by the initial straight line portion of the logarith-
namics is entirely described by the simple diffusion with mic plot of p(t), which corresponds to E¢37). Also shown
diffusion coefficientD, one can obtain the solution to the in Fig. 19 is the Glauber dynamics density relaxation, res-

0.1

ST

ool ol
10° 10 10° 10
t (MCS)

diffusion equation asAppendix B caled by the diffusional relaxation time,, which agrees
well with the Kawasaki dynamics results. It corresponds to
sin nmz Eq. (33) with 75~0(1) GMCS.

) Figure 20 shows the corresponding results at a lower tem-
e PLT (35  perature ay=0.7, T*=0.5, andBu= —5.55, which is lo-
cated at a boundary of the hysteresis region shown in Fig. 16.
_ o — The initial diffusion limited regime witht'/? scaling ends
The average density inside the systenp(t)  ground t=0O(10%) MCS, and the bulk density relaxation

L

n

p(zt)=1-4
n=135,...

=[5(dz/L)p(z,1) is given by makes a crossover in logarithmic scale into the effective
grand canonical relaxation represented by the Glauber dy-

_ g D(n7/L) namics rescaled byp .
p(t)= 1—8n:1;5 nz—wz (36) The bulk density relaxations shown in Figs. 19 and 20 are

expected to have similar behavior when probed in terms of
the dynamic structure factor measured in scattering experi-
ments. Thet'? scaling, and the effective Glauber dynamics

)1/2 relaxation regimes correspond to the standard exponential

The smallt limit of the solution is(Appendix B

Dt

(37)  decay of correlations due to diffusion, and the stretched re-
L2

laxations with broad distribution of time scales of the corre-
lation function.

The t¥2 scaling of Eq.(37) can in fact be inferred from the Close agreement of the effective Glauber dynamics res-
dimensional argumeri#t3]. The prefactor of the initial scal- caled by the diffusive relaxation time with the conserved

;(z)z4
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FIG. 20. (3) Time evolution of density profile foy=0.7, T FIG. 22. (a) Boundaries of hysteresis region affyj adsorption/

=0.5, Bu=—5.55, pg=0, p,,=0.31. Symbols and solid lines are S . -
the Kawasaki dynamics simulation and the ideal diffusion profile atdesorptlon isotherms foa=15 A, y=0.9 from the Monte Carlo

esorption Isotherms
t=1, 1X16°, 1x10%, 2X10%, 5x 10", and 1X 1P in MCS, re-  Smulations.T*=0.4 in (b).

spectively.D=1.5x 10" 2 b?/MCS. (b) Bulk density as a function i i s 1
of time. Symbols are the same as in Fig. 19 with, cients of argon at the triple poifDb=1.6x10"°cn?s

—0.31 GMCS. [44] and that of the lattice gas near the high density limit
D=0.005a’MCS !, we get 1 MCS=0.03 ns fora=30 A.

. . _ . With 7g~O(10?) MCS for the simulated system of Fig. 20,
d_ynamlcs allows one to estimatg via Eq. (33) for situa- 7 /L?~O(10°) scrm 2. Diffusion coefficient is found to
tions where the slow glassy dynamics due to the activateflgqrease significantly as density increases. An analogous
barrier crossings prohibits one to perform conserved ordeginjation of the initial diffusion limited regime yielded
parameter simulations for large systems. The relaxation im@y _ 5 oy 10-5p2/MCS for Bu=—5.45 andpy=0.4, which
7 In a noncritical system is nearly independent of the Syt resnonds to the condition deep inside the hysteresis re-

tem size, and a fairly good estimate can be made with sim gion in Fig. 20, whererg~©(10") GMCS. Equation(33)

lations of a moderately sized system. An additional estimat@. c - /| 2= (’)’(10) yr/cc-ﬁ? '

of the diffusion coefficientD for the system from sources K '
1/2 i i i i ;

such as thet™* scaling regime in Fig. 20 yieldsy for e 5 fynction of the lattice constaatamong other param-

samples of arbitrarily large sizes.

0 lib K K d . £ th latt eters. The valuea=30 A chosen for the simulations de-

ne carll calibrate | awafsa ! gnamlcsl of the pure altt'c.escribed above is expected to overestimate the degree to
Sﬁistnghae (I?/Iggtneng(z:atrl%n:ter[;)sr/lnCtS)epzlrmslth:ttlgrt]hgrgiyssciga? Nwhich barrier crossings occur in density relaxations. Since a
. ) - 7 filled pore contains approximately-(d/a)® lattice sites,
time scalg/42]. Figure 21 shows the diffusion coefficient of b bp y-(d/a)

; X X -~ each of which acting as a single particle in Monte Carlo
the bulk lattice gas on an fcc lattice obtained by Calcmatmgsimulations, a collective motion of the group of particles

the cumulative mean square displacements of a tagged Paffjiny 5 pore would become more likely @sincreases. Ag

t'CI.e at T*=0.55, which roughly cor_responds_ to _the trlple_ is decreased to microscopic length$ A corresponding to
point temperature of argon. Comparing the diffusion coeffiy,e  mojecular size of adsorbing gases, barrier crossings
would become increasingly improbable, and the relaxation
10™ — : : : times would, in general, be longer than those obtained for the
Hamiltonian with larger values .

As a partial confirmation of such trend, we examine the
relaxation in the Glauber dynamics in the hysteretic regime
for a=15 A atT* =0.4 (Fig. 22. A few typical trajectories
in the Glauber dynamics starting with different initial condi-
D L - tions are shown in Fig. 23. Long periods of quasiequilibrium
' in local minima are punctuated with rare fluctuations corre-
sponding to the barrier crossings. The overall relaxation time
is expected to beg=O(10°). Assuming that the diffusion
coefficient is smaller than the value found for conditions in
Fig. 20, each of the typical quasiequilibrium stages shown in
Fig. 23 would have durations of the order of more than sev-

R R R S eral years/crh
0.0 0.2 0.4 0.6 0.8 1.0

The overall dynamics as well as relaxation times would

10°

P VIl. CONCLUSION
FIG. 21. Self-diffusion coefficient of the bulk lattice gasTat The mean field and Monte Carlo simulation results de-
=0.55 as a function of densit{ is in units ofa?/MCS. scribed in this paper provide a fairly comprehensive under-
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0.8 — 71— APPENDIX A: MEAN-FIELD THEORY

. We consider the Ising Hamiltonian, E@a), with an extra

external fieldsh; ,
06 E—VL_,__\[

1
H:_Eiz ‘]ijsitisjtj_zi hi,Sitii (Al)
P o4 :

L ) whereh/ =h;+ sh; andJ;; =(J/2)5|ri_,j|'a. The free energy

0r M is given by

i ] —BF=(InZ[t;]):, (A2)
0.0 b where
0 5x10° 10°
t (GMCS)
Z[t]=2 e AN, (A3)
FIG. 23. Density relaxations in Glauber dynamics far {si}

=15 A, y=0.9, andT* =0.4 with various initial conditions.

. . . . The average magnetization, assumed to be self-averaging, is
standing of the phenomenologies observed in experlments% g J ging

fluid adsorption on disordered mesoporous glasses. The th ven by m=(m;), wherem; is the thermal average for a
. A iven sample,

modynamic behavior is fundamentally changed by the ap*

pearance of the large number of local free energy minima as aInZ[t]

the asymmetry parametgr 1/2 is increased from zero. The i:_'

local mean field theory provides a natural platform to study dpoh;

such qualitative features, and gives an accurate qualitative

description of the hysteretic and scanning behavior found if\pPplying the Hubbard-Stratonovich transformationZpt; |

adsorption/desorption experimef&7]. The effects of ther- [45] gives

mal fluctuations allowing the system to cross local free en-

(A4)

ergy barriers are expected to be minimal, in general, under _ 1
conditions appropriate for real fluidirge field,y—1/2), as Z[t]= % Dyrexp — 2 ; $iKij iy
indicated by the trends obtained in our Monte Carlo simula- !
tions.
In adsorption experiments, one typically observes that a +> [Siti(¢i+/3hi')]}. (AS5)
change in external vapor pressure is followed by a fairly !

rapid approach to a quasiequilibrium state, which subse- . o : .
guently appears unchanged over experimentally accessibihere Dy includes the normalization factor. The interaction

time periods[40]. The latter dynamical regime has often Matrix Kj; for the field is related to the spin interaction by
been confused as corresponding to tiermodynamicneta-  Kij=ksTJ;*. Summing overs}, we get
stable phase one encounters in the conventional first-order
phase transition as in pure systems and wetting transitions. Z[t-]=J’ Dye S (A6)
The two stage nature of the density relaxations described in I ’
Sec. VI, consisting of the diffusion limited and the activated
dynamics regimes, provides a natural and direct explanatiowhere the action is given by
of such phenomenology.

It will be of interest to see whether one can use off-lattice 1
models that incorporate molecular properties of adsorbing L ¥i:til=3 ; ¢iKii¢i_2i In2 cosliti(¢i + Bhi)]
gases as well as fluid-solid interactions more faithfully, and
make more detailed quantitative predictions based on the 1 ,
overall picture described within the current model. Another -2 % 'z”iKii’//j_Ei tiIn2 costiy;+ hy),
important aspect that has not been treated here is the effect of
hydrodynamic flows on the dynamics. Inclusion of momen- (A7)
tum conservation to the dynamical equations such as Eq. ) i
(29) and related implementations of the coarse grained simgn which the constant term has been dropped in the second

lation based on the current model might provide valuable'™®: _
insights. Mean field profiles{y;"} satisfy the equatioWS/azpiqu
=0 or
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The solution indexa allows for the situations where there p(z,)=pi(z,t)+pi(L—2zt), (B3)

exist many distinct solutions to EGA8), characteristic of the

disordered systems. The mean field approximation amountwherep;(z,t) is the profile for the system bounded with an

to including contributions to the functional integral in Eq. interface only atz=0. The calculation ofp;(z,t) is most

(A6) only from the minima: easily done by exploiting the symmetry &t 0 [43], which
yields

Z[t]= e S, (A9)

pi(Z,t)=po+Ap

z
1—erf( . \/ﬁ) 1 (B4)

where Ap=p..— po. The reduced density(z,t)=[p(zt)

Equation(A4) becomes

1 L e
m==— >, mie S, (A10)  —pol/Ap is given by
Z[t] "«
h o(zt)~2—erf| — L=z (B5)
where zt)=2—erfl ——| —erfl ——|,
g 2Dt 2Dt
S, _
mi'=— W=ti tanh( 4"+ Bhy) (A1l)  which is valid forL>2/Dt. The average inside the system
I

p(t)=(1/L) f5dzp(z,t) corresponding to EqB5) is
andS,=9 " ,t;]. The minimized actiors,,, given in terms

N 1/2
of the field ¢i*, can be replaced by the Legendre transform ¢y~ 1—erf( L ) _z(ﬂ (e~L?4Dt_1) |
in the zero-field limit, 2Dt L2
(B6)
BF[m]= §Em0 Sa+§i: IB‘Shimia}- (A12)  Taking the limitDt/L2—0 of Eq.(B6) yields Eq.(37).

For larget with a finite L, fluids inside the system is

Equations(A7), (A8), (A11), and(A12) yield Eqgs.(14) and affected by both of the interfaces, producing deviations from
(1q5). SIAT), (AB), (AL1) (A12)y as.(14) Egs.(B5) and(B6). To find the general solution, we expand

p(z,t) in Fourier serie$46] as

APPENDIX B: IDEAL DIFFUSION 12 @

_ o nmz
We consider the ideal one-dimensional diffusion of fluids p(z,t)= ([) ngl an(t)sin——, (B7)
with diffusion coefficientD in the system shown in Fig. 18.
The density profile at time, p(z,t) satisfies the diffusion

equation such that it satisfies the boundary conditiefO,t) = p(L,t)

=0. Substitution into Eq(B1) yields the equation for the
Fourier coefficient,

2
ﬂ—p:Dﬁ—p (B1)
ot Eria da, 2YnaD 5
T T[l—(—l)”]—D(mr/L) an(t). (B8)
subject to the boundary and initial conditions L
p(0t)=p(L,t)=p., (B2a  The initial condition(B2b) implies a,(0)=0. Solving Eq.
(B8), we get
p(z,00=py (0<z<L). (B2b) (2L)22
2
In the asymptotic limitL —c, or t—0, the couping be- an(=———[1-(-1"[1-e P, (BY)
tween the two interfaces at=0 andz=L can be ignored,
and the solution can be written as Substitution of Eq(B9) into Eq. (B7) gives Eq.(35).
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