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Phase behavior and dynamics of fluids in mesoporous glasses
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~Received 8 April 2002; revised manuscript received 2 December 2002; published 28 April 2003!

Equilibrium and dynamical relaxation behavior of fluids confined in disordered mesoporous glasses such as
Vycor are studied based on a lattice model using mean field theory and Monte Carlo simulations. Preferential
attractive interactions between the solid surfaces and the fluid suppresses macroscopic phase separation, while
making the relaxation rate increasingly slow. The free energy landscape characterized by the presence of the
many metastable minima separated by finite barriers dominates both the static and dynamic behavior of fluids
at low temperature. Our results provide additional insight into the nature of hysteresis in adsorption measure-
ments of gases in porous glasses.
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I. INTRODUCTION

Confinement of fluids in porous materials can profoun
affect their macroscopic behavior@1#. One important class o
materials widely used for various applications is the dis
dered mesoporous glass, such as Vycor or controlled p
glasses. Typically synthesized via a spinodal decomposit
glassification and subsequent leaching of a binary mixtu
disordered mesoporous glasses are characterized by
tively small porosities~volume fraction of void space!, me-
soscopic length scale of pores, and the disordered, inter
nected network of pore structures. Prominent featu
observed in experiments of gas adsorption in such mate
include the apparent absence of the macroscopic phase
ration, and widespread hysteresis.

A traditional approach to describing such nontrivial pro
erties is to attempt extensions of the relatively well-kno
behavior of fluids confined in pores of simple geometr
such as slits or cylinders@2#. Detailed descriptions of the
static as well as dynamic behavior can be obtained by
density-functional theories and simulations. A rather natu
idea of applying such approaches to disordered mesopo
materials is to assume that a macroscopic porous mat
can be regarded as a collection of independent, noninte
ing pores with some statistical distribution of pore siz
However, the disordered interconnectivity of the adjac
pore regions is ignored in such approaches, excluding
possibility of collective phenomena at length scales exce
ing the typical pore size.

An alternative viewpoint is to start from the global, coar
grained picture of the fluid in mesoporous glasses within
statistical mechanical perspective, and consider simple m
els designed to capture the essential physical ingredi
thought to be responsible for the phenomena observe
experiments. The lattice gas, or equivalently the Ising mo
provides a natural starting point as a simplified model for
bulk fluids. The disorder that arises from the random spa
distribution of solid matrices, which exerts attractive ‘‘su
face fields’’ on the the fluid, can be modeled in the simpl
level by random fields on each lattice sites, and one arrive
the random field Ising model@3#, which has been extensivel
studied mainly within the context of critical phenomena@4#.

The applicability of the random field Ising model in i
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standard form to fluids in mesoporous glasses with low
rosity such as Vycor has often been questioned@5#. Effects of
confinement due to the particular structure of the underly
microstructure are ignored entirely. Spatial correlation of
glass solid distribution implies that a second length scaled,
namely, the typical domain size of the pore structure, is n
essary in addition to the microscopic length scalea of the
order of molecular sizes for a minimal description of t
system. Nevertheless, some qualitative features observe
the random field Ising model are expected to play import
roles for fluids in mesoporous glasses. One of the most
portant features that arise from the consideration of the r
dom field Ising-type models is the presence of a rugged
energy landscape with many local minima separated by
energy barriers, which dominates thermodynamics at
temperatures.

Recent studies using mean field theory@6,7# of lattice
models incorporating the physics of confinement and wett
more realistically in addition to the disorder effects in t
random field Ising model have provided useful insights n
easily accessible either in detailed molecular simulation st
ies @8# or studies based on simple pore geometries. T
provide a rather natural conceptual explanation of the ori
of hysteresis and irreversibility seen in experiments on fl
adsorption in disordered porous materials@6,7#. In the cur-
rent paper we build on these earlier studies using both Mo
Carlo simulations and mean field theory and focusing o
lattice model of a porous glass@6#. We explore the equilib-
rium behavior in more detail and also study the dynamics
the relaxation processes in the model. Our work yield
fairly comprehensive picture of the equilibrium and dynam
relaxation behavior of fluids in disordered mesoporo
glasses.

The lattice model studied in this work is based on a latt
gas with disordered, spatially correlated site dilution and
additional,nonrandom, attractive interaction between fluid
and solid surfaces@9–11#. It incorporates the main physica
elements of confinement, disorder, and wetting in a conc
way, and has recently been successfully used to model fl
in porous glasses within the mean field theory@7#. The pres-
ence of a very large number of metastable states domin
the global thermodynamic properties, allowing one to ca
ture many of the qualitative features observed in adsorp
©2003 The American Physical Society07-1
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experiments within the mean field level.
The paper is organized as follows. Section II describes

model Hamiltonian and its relationship to other models. S
tion III discusses the Gaussian random field method@7# and
its application to the generation of Vycor glass configuratio
used in the current work. Applications of the mean fie
theory and Monte Carlo simulations to the adsorptio
desorption and equilibrium phase coexistence are discu
in Secs. IV and V, respectively. General aspects of the re
ation behavior of fluids in Vycor, and the conserved ord
parameter simulation of the lattice model are described
Sec. VI. The final section contains discussion of our res
and some concluding remarks. Some of the details of d
vations encountered in the above mentioned sections h
been collected in the Appendixes.

II. LATTICE MODEL

The lattice model Hamiltonian@9–11# adopted in the cur-
rent study can be written as

H52J(̂
i j &

ninj t i t j2m(
i

ni t i2yJ(̂
i j &

@nit i~12t j !

1nj t j~12t i !#, ~1!

whereni50,1 is the usual fluid occupation variable of th
lattice gas, andt i is the quenched random variable represe
ing the solid matrix configuration, equal to either 1 or
depending on whether the sitei is open to occupancy by th
fluid, or blocked by solid, respectively. The double summ
tions run over all of the distinct nearest neighbor site pa
with the fluid-fluid interaction strengthJ setting the tempera
ture scale of the model, andm is the chemical potential. The
second interaction term in Eq.~1! accounts for the additiona
attractive interactions between the fluids on the sites nex
solid surfaces, whose strength can be varied by adjusting
parametery. The statistical nature of the quenched disord
$t i% is specified by the probability distributionP@ t i #, which
can be regarded as a discretized form of the distribu
function P@rs(r )# of the solid matrix density fieldrs(r ).

The symmetry of the model as well as its relationship
other models become more apparent in the equivalent I
form obtained by the transformation into the Ising spin va
able,si52ni21,

H52
J

4 (̂
i j &

sisj t i t j2(
i

hisi t i , ~2a!

where irrelevant constant terms have been dropped, and
inhomogeneous fieldhi is given by

hi5~m1zyJ!/21
J

2
~1/22y!(

j P i
t j . ~2b!

Herez is the coordination number of the lattice, and the s
runs over the nearest neighbors of the sitei.

The Ising form~2! shows that the model can be thought
as an Ising model with spatially correlated site dilution, a
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a ‘‘random field’’ whose distribution is coupled to that of th
site dilution via Eq.~2b!. The effect of the surface field van
ishes andhi becomes homogeneous wheny51/2, and the
model reduces to a site diluted Ising model. Many of t
nontrivial features manifested by the model arises from
asymmetryyÞ1/2, and it is useful to considery21/2 as the
control parameter responsible for the crossover from the
diluted to the random field type behaviors. However, we e
phasize that the model includes the effects of disorder see
the random field Ising model and the effects of confinem
and wetting that are missing in that model.

III. VYCOR GLASS

A. Gaussian random field method

A number of choices for the quenched disorder distrib
tion have been used in the studies of lattice models in
context of the fluids in porous glasses. The simplest choic
to take uncorrelated random distribution of solid sites:

P@ t i #5)
i

@pd t i ,11~12p!d t i ,0#, ~3!

wherep is the porosity.
To incorporate the effects of the second length scald

associated with the pore size of the glasses, it is necessa
add spatial correlations in the solid density distributionP@ t i #
@12#. The disordered nature of the solid matrix implies th
the porous glass configurations can be efficiently obtained
generating random fields in the three-dimensional space
constraints to their spatial fluctuations designed to ma
known properties of the material. The uncorrelated rand
distribution ~3! corresponds to the case where the only co
straint to the solid density fluctuations is the microsco
cutoff, whose length scale would be of the same order as
of a fluid molecule.

Gaussian random field methods are based on the C
model of spinodal decomposition@13#, where an auxiliary
random fieldf(r ) is utilized to generate the physical densi
of the solid via the level cut,

rs~r !5Q„f~r !2fc…, ~4!

whereQ(x) is the Heaviside step function. The lattice va
able t i is obtained via the discretizationt i512rs(r i). The
field cutoff fc , and the spatial correlations of the field ca
be fixed by the requirement that Eq.~4! correctly yields the
statistical properties of the solid density distributions. Sim
lar methods for generating long-range correlations based
the Fourier filtering method have been used by Makseet al.
@14,15#.

For the Vycor glass, prominent characteristics of the m
terial include the porosityp.0.3, and the structure facto
I (q) obtained from the small-angle neutron scattering
periments@16#. The porosity controls the average volum
fraction of the void spaces, and the structure factor, with
characteristic peak atq.0.023 Å21 @16#, reflects the meso-
scopic domain structure. The two properties can be dire
related to the cutofffc and the spatial correlation of th
7-2
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PHASE BEHAVIOR AND DYNAMICS OF FLUIDS IN . . . PHYSICAL REVIEW E67, 041207 ~2003!
auxiliary field. A general form of the probability distributio
of a Gaussian random fieldf(r ) can be written as

P@f~r !#5
1

A
expF2

1

2E E drdr 8f~r !G21~ ur2r 8u!f~r 8!G ,
~5!

whereG(r ) is the two-point correlation function of the ran
dom field defined as

G~r !5^f~0!f~r !&, ~6!

in which r 5ur u, the brackets denote the average with resp
to the probability distribution,

^•••&[E DfP@f~r !#~••• !, ~7!

and A is the normalization constant in Eq.~5!. Since the
amplitude of the auxiliary field is arbitrary, we setG(0)
5^f(r )2&51. The constraints can be written as

12p5^rs~r !&, ~8a!

I ~q!}M̂ ~q!, ~8b!

where M̂ (q) is the Fourier transform of the solid densi
correlation functionM (r )5^rs(0)rs(r )&2p2. Using Gauss-
ian functional integrals, it can be shown that the relations
be explicitly written as@18#

12p5
1

2
erfc~fc /A2!, ~9a!

M ~r !5p~12p!2
1

2pEG(r )

1 dt

A12t2
e2fc

2/(11t). ~9b!

Figures 1 and 2 show the correlation functions of the phy
cal densityrs(r ) and the auxiliary fieldf(r ) in Fourier
space and real space, respectively. The solid density dist
tion can be obtained by generating sets of random com
numbers f̂(q) with zero mean and variancêuf̂(q)u2&
5Ĝ(q) subject to the constraint

f̂~q!* 5f̂~2q! ~10!

on a cubic lattice with lattice spacinga, such thatL5Na.
Fourier inversion is then performed with the fast Four
transform@19#. Due to the errors arising from discretizatio
filtering the resulting fieldf r at the cutofffc given by Eq.
~9a! does not give the accurate porosityp originally in-
tended. We instead adjusted the cutoff value for each rea
tions such that the level cut yields the porosityp50.3.

Figures 3 and 4 show the solid surface visualized by
terpolations of the level cut, Eq.~4!, and the two-
dimensional cross sections on the lattice for two differ
choices of the lattice constanta530 Å and a515 Å. The
face centered cubic~fcc! lattice has been used throughout t
work described here. The solid density field obtained by
04120
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level cut of the Gaussian random field on the cubic latt
with spacinga was imported into an fcc lattice with the cub
lattice constantb52a.

The parametera sets the scale of resolution of th
method, with smaller values yielding better description of t
microscopic structure of the pores, whereas the overall c
putational costs would be largely determined by the num
of cubic unit cells along each dimensionN. For physical
samples of fixed linear dimensionL5Na, better micro-
scopic resolutions achieved by smallera values require more
computational costs. Althougha values affect the overall be
havior of the system quantitatively, qualitative behavio
were found to be similar with different choices. Systems w
a530 Å were used for most of the calculations reporte
with comparisons witha515 Å case in Secs. IV and V. Un
less otherwise noted, system sizes wereN532 andN516
for the mean field and Monte Carlo simulations, with resu

FIG. 1. Structure factor of VycorI (k) ~solid line, in units of
cm21) from Ref. @17#, and the correlation function of the Gaussia

auxiliary field in Fourier space,Ĝ(q) ~dotted line!, calculated by
Eqs.~9! with p50.3.

FIG. 2. Real space correlation functions of the physical den
M (r )/p(12p) ~solid line! and the auxiliary fieldG(r ) ~dotted
line!.
7-3
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H.-J. WOO AND P. A. MONSON PHYSICAL REVIEW E67, 041207 ~2003!
averaged over more than 10 disorder samples. We do
consider critical properties of the model in this paper, and
size of the system used in the Monte Carlo simulations
expected to have little effect on the qualitative behavior
long as it is considerably larger than the typical pore size

B. Percolation properties

An important requirement for a realistic model of the V
cor glass matrix is the bicontinuity of the pore and so
regions throughout the three-dimensional space. Depen
on the spatial correlations of the pore space, there gene
exists a percolation threshold as the porosity is increa
below which most of the pores are statistically disconnec
preventing fluid adsorption throughout the material.

FIG. 3. Solid surfaces generated by the Gaussian random
method. The linear dimension of the cubic box corresponds tL
5Nca5960 Å, whereNc564 is the number of lattice grids use
for each dimension, anda515 Å is the lattice spacing.

FIG. 4. Two-dimensional cross sections of the lattice varia
configurations$t i% on fcc lattice, with spheres representing the si
wheret i50 ~solid!. The left- and right-hand side images were ge
erated witha530 Å, N532, anda515 Å, N564, respectively,
where 2a andN are the size and number of the cubic unit cell alo
each dimension. The physical length of the box isL51920 Å in
both cases.
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A convenient measure of the percolation property is p
vided by f p(p), the fraction of the disorder realizations i
which there exists at least one path starting from a site wit
one face of the lattice (x50) and reaching the other fac
(x5L). The paths are allowed only on sites for whicht i
51. For a given lattice with a set of disorder realizatio
$t i%, f p(p) can be easily calculated by initializing spins
the voids assi521 for a given realization, growing cluster
from the sites atx50 by recursively visiting all neighboring
sites witht j51 andsj521 as in the Wolff cluster algorithm
for the Monte Carlo simulation@20,21#, while uncondition-
ally flipping spins within the cluster. A realization is ident
fied as percolated when the other face is reached at any t
whereas if all possible paths have been searched with
reaching the other end, the realization is identified as n
percolated. The probabilityf p(p) is obtained by calculating
the fraction of percolated realizations within the ensemble
the total disorder realizations.

The percolation thresholdpc is defined as the value of th
porosity where the probabilityf p makes a discontinuou
jump in the thermodynamic limit. Threshold values ha
been determined for a variety of lattices@22# for the uncor-
related site disorder, Eq.~3!. The value for the simple cubic
lattice is pc.0.31, indicating that the pores in the simp
cubic, uncorrelated random matrix at the porosity of Vyc
do not percolate the space well. Higher coordination num
facilitates percolations, andpc.0.20 for the random matrix
on fcc lattice. Figure 5 shows the percolation probabil
f p(p) calculated for the random and Vycor glass matrices
the cubic and fcc lattices. The presence of spatial correlat
significantly lower the percolation threshold, and the por
ity p50.3 is well above the threshold for the Vycor gla
configurations generated by the Gaussian random fi
method.

IV. MEAN FIELD THEORY

Mean field theory provides important qualitative insigh
for Ising-like lattice models, especially for disordered sy

ld

e
s
-

FIG. 5. Percolation probability as a function of the porosityp.
Diamonds and rectangles are for the uncorrelated random dist
tion on the simple cubic and fcc lattices, respectively. Circles are
the Vycor glass distribution generated by the Gaussian random
method witha530 Å. Systems withN532 were used in all cases
Symbols represent the fraction of percolating realizations am
500 disorder samples.
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PHASE BEHAVIOR AND DYNAMICS OF FLUIDS IN . . . PHYSICAL REVIEW E67, 041207 ~2003!
tems. We first consider the symmetric case,y51/2, for
which the Ising form of the model, Eq.~2a!, is more conve-
nience. The free energyF is given by the quenched averag

F5^F@ t i #& t , ~11!

where^•••& t[($t i %
(•••)P@ t i # and

e2bF[ t i ][Z@ t i #5(
$si %

e2bH, ~12!

in which b51/kBT as usual. A generalized form of the mea
field theory@23# ~Appendix A! gives

Z@ t i #5(
a

e2bFa, ~13!

where

bFa5(
i

F11mi
a

2
ln

11mi
a

2
1

12mi
a

2
ln

12mi
a

2 G
2

bJ

4 (̂
i j &

mi
amj

a2(
i

bhimi
a ~14!

is the free energy of the minimuma, satisfying the mean
field equation

mi
a5t i tanhF ~bJ/4!(

j P i
mj

a1bhi G . ~15!

For a pure system such as the Ising model, there usu
exist one or two minima of Eq.~14!, corresponding to the
high temperature or broken symmetry phases. In contras
the disordered systems such as the current model, the m
field equation potentially possesses a large number of m
stable minima, which are represented by the indexa. Ex-
pressions for the macroscopic observables directly fol
from the free energy~14!. In particular, the average magn
tization ~density in the fluid language! is given by m5
2^]F@ t i #/]hi& t5^mi& t , where

mi5

(
a

mi
ae2bFa

(
a

e2bFa

. ~16!

The local mean field equation~15! can be solved numeri
cally on the lattice with a given realization of the disord
$t i% by starting with an initial guess of$mi

a% and iterating
until convergence is achieved. Different solutions are
tained depending on the initial condition of the iteration.

For the symmetric casey51/2, the model reduces to th
site diluted Ising model, where it has been well establish
that the phase transition persists for the disorder realizat
that percolate the space@24#. The dilution lowers the critical
temperatureTc which approaches zero at the percolati
threshold.
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To search for multiple minima, the initial conditions o
iteration were chosen by randomly assigning magnetizati
by Gaussian distributions around various mean and v
ances, which were also chosen randomly. Below the crit
point T* ,Tc* , whereT* 5T/Tcb is the reduced temperatur
defined with respect to the bulk critical pointTcb , the solu-
tions are enveloped by the ‘‘maximal solutions’’@23#, whose
magnetization has the largest magnitude, and are the
global minima of the distribution. At temperatures aw
from the critical point, the free energy difference between
maximal solutions and the rest of the minima is large, ca
ing expression~13! to be dominated by the term correspon
ing to the maximal solution. As we approach the critic
region, the free energy difference becomes smaller, and
contributions from the other solutions increase~Fig. 6!.

To calculate the equilibrium magnetization from Eq.~16!
below the critical point, the summation over the minim
found needs to be partitioned into two phases. Fory51/2,
the symmetry naturally dictates the partitioning intoma.0
andma,0. The average magnetization curve calculated
Eq. ~16! near the critical point is shown in Fig. 7, along wit
that of the maximal solution. An exhaustive search for t
minima even for a moderately sized lattice would be a dau
ing task, and the weighted average shown in Fig. 7 inclu
only a part of the nonmaximal solutions. The residual ma
netizations near the critical point, similar to the finite si

FIG. 6. Distributions of the mean field free energy minima ne
the critical point fory50.5 with a515 Å; ~a! T* 50.8, ~b! T*
50.9.

FIG. 7. Average magnetization versus temperature fory51/2
anda530 Å. A single sample withN532 was used. Circles con
nected by the solid line are the weighted average calculated by
~16!, and the dotted line corresponds to the maximal solutions.
7-5
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H.-J. WOO AND P. A. MONSON PHYSICAL REVIEW E67, 041207 ~2003!
effects typically seen in Monte Carlo simulations, result fro
the incompleteness of the numerical solution search that
derestimates the contributions of the nonmaximal soluti
to the weighted average.

Although the numerical search for the set of local fr
energy minima described above cannot be expected to
complete even for small systems, it can uncover import
qualitative differences in the free energy landscape of
system for different conditions. From Fig. 6, for examp
one can expect that in the thermodynamic limit, the syst
properties could either be dominated by the few minima,
be influenced by the presence of rugged landscape chara
ized by minima whose number increases exponentially w
system sizes. A systematic study of the number of soluti
with increasing system size would be helpful, although su
a study would necessarily be limited to very small system
for which the quality of statistics for the glass representati
would be rather poor.

The location of the critical pointTc* depends on the rela
tive degree to which the void space is percolated, and th
fore on the parametera, which determines the typical por
size in units of the lattice constant. Asa→0, each pore re-
duces to the bulk fluid, andTc* →1. Figure 8 shows the
maximal solution boundary for three different values ofa.
The effect of confinement fora&10 Å is seen to be small fo
the symmetric site diluted model in the Vycor glass matr
The qualitative trend of the critical temperature as a funct
of the effective domain sized/a in units of the lattice con-
stant agrees with the previous study of the site diluted Is
model on Vycor-like glass matrices using Monte Carlo sim
lations @25#.

The Ising symmetry no longer exists wheny.1/2, and it
is more convenient to use the lattice gas form of the mo
The mean field equation analogous to Eqs.~14! and~15! for
the grand potential functional reads

bVa5(
i

@r i
a ln r i

a1~12r i
a!ln~12r i

a!#2bm(
i

r i
a

2bJ(̂
i j &

@r i
ar j

a1yr i
a~12t j !1yr j

a~12t i !#, ~17!

where the densityr i
a5($ni %

nit ie
2bH satisfies

FIG. 8. Loci of maximal solutions fory51/2 for a515 Å ~solid
line!, a530 Å ~dotted line!, anda550 Å ~dashed line!.
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r i
a5

t i

11expF2bm2bJ(
j P i

~r j
a1y2ytj !G . ~18!

Using Eq.~18!, the locus of maximal solutions for a give
temperature is easily found by numerical iterations. We s
with m.6` and change the value ofm in either directions
by small increments, while determining the average dens

r5K 1

Ns
(

i
r i

aL
t

, ~19!

whereNs is the total number of sites witht i51, for each
chemical potential values via numerical iterations@6,7#. The
previous set of local density values satisfying the mean fi
equation is used as the initial guess for iteration for the n
value of chemical potential. This locus corresponds to
adsorption isotherms of fluids measured in experiments.
change in chemical potential as the control parameter
duces the transitions between neighboring local free ene
minima. Figure 9 shows a typical set of adsorption isother
for y50.5 andy51.0. For the symmetric case, the hystere
gap retains much of the typical behavior seen in the p
systems, an exception being the smoothing~due to disorder!
of the discontinuous jump in density around the spinoda
pure systems.

As we turn on the surface fields by increasingy from y
51/2, the hysteresis region develops the characteristic as
metry seen in experiments of fluid adsorption in mesopor
glasses. Whereas the adsorption branch remains smooth
desorption branch shows a precipitous drop in density i
narrow range of chemical potentials, which tends to beco
more pronounced asy increases and temperature decreas
In contrast to the symmetric case, the mean field free ene
minima were found to show broader distributions~Fig. 10!,
and the maximal solutions no longer dominate.

FIG. 9. Mean field adsorption~solid lines! and desorption~dot-
ted lines! isothermsr for y50.5 ~top! andy51.0 ~bottom!. From
the left to right,T* 50.5, 0.6, and 0.75 fory50.5 andT* 50.4,
0.5, and 0.65 fory51.0, respectively.
7-6
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FIG. 10. Distributions of the mean field free energy minima near coexistence fory50.7 below and above the critical point;~a! T*
50.4, bm525.623 and~b! T* 50.6, bm523.687.
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The interior of the hysteresis region shown in Fig. 9 co
tains many local minima of the mean field free energy~the
number of minima would be essentially inifinite in the the
modynamic limit!, revealed by the myriad of intermedia
solutions to the mean field equation found when we trave
the control parameterm space in various directions, produ
ing the so-called ‘‘scanning curves’’@7#. The gradual cross
over from the conventional two-phase coexistence of b
fluids with the free energy characterized by the two mini
separated by a barrier proportional to the interfacial free
ergy, to the strongly hysteretic behavior due to the large m
tiplicity local minima is expected to occur as we increasey
from the symmetric value. For the case ofy51/2, the free
energy barriers between local minima would mainly be d
to the entropic factors associated with the disordered
rangement of confining blockers, and therefore relativ
small. Little qualitative difference is expected in the noncr
cal phase behavior compared to the pure system limit, ex
the depression of the subcritical phase separations to lo
temperature regimes.

As the field is turned on (y.1/2), the barriers would
increase due to the attractive interactions between solid
faces and the fluid inside the pores, developing the lo
ruggedness of the free energy landscape. The increasing
energy barriers and the resultant hysteresis appears sup
posed to the global bimodal feature of the free energy, wh
in turn becomes eventually overshadowed by the field
fects, and for strong fields the two-phase coexistence
mally encountered in bulk fluids is expected to be larg
irrelevant. Such qualitative behavior is also observed in
random field Ising model, where there exists a critical fie
strength above which no phase transition exists@26,27#.

To confirm such trends of the equilibrium phase coex
ence within the mean field theory, the hysteresis region
first identified by calculating the locus of maximal solutio
~adsorption/desorption isotherms! as in Fig. 9, and the distri
butions of the free energy minima were searched for a n
ber of chemical potential values inside the hysteresis reg
At sufficiently low temperatures, the distribution shows t
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bimodal character near coexistence~Fig. 10!. The summation
in Eq. ~16! was partitioned into two ‘‘phases’’ for whichra
,rc andra.rc , respectively. The critical densityrc , ini-
tially guessed, can be refined to achieve the overall con
tency of the coexistence curve. The grand free energy
phasei is defined as

V ( i )52kBT lnF(
aP i

e2bVaG , ~20!

where the sum is over all local minima of the grand poten
associated with phasei. At coexistence the grand free ene
gies of the two phases are equal. The corresponding p
densities are given by

r ( i )5ebV( i )

(
aP i

rae2bVa. ~21!

Approximate phase coexistence densities for various
ues ofy are shown in Fig. 11. Shown together are the bou
aries of the hysteresis region, the two densities at which
hysteresis gap opens and closes. For the site diluted cay
50.5, the hysteresis boundary remains close to the coe
ence curve, and as one lowers the temperature, the ons
hysteresis occurs near the critical point, a feature commo
observed in pure systems.

As the surface field increases, the global two-phase co
istence is suppressed to lower temperatures, whereas
temperature regime where hysteresis begins to develop
mains nearly independent ofy. Hysteresis and equilibrium
phase coexistence develop at two distinct temperaturesTh
and Tc , respectively. In the temperature regimeTc,T
,Th , the free energy landscape is dominated by multiplic
of local minima without any macroscopic phase separati
The nontrivial symmetry breaking characterized by the
pearance of rugged free energy landscape atTh is analogous
to the replica symmetry breaking transition observed in
models of spin glasses@28#. As the Thouless-Anderson
Palmer approach for spin glasses, the local mean field the
7-7
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FIG. 11. Mean field phase coexistence densities~filled circles, solid lines! and the boundaries of hysteresis region~open circles, dotted
lines! for three different values ofy. Lines are guides to the eye.
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adopted to the present model readily reveals the signature
the rugged free energy landscape.

Although the first-order phase transition and the tw
phase coexistence characterized by the bimodal free en
retains its global feature at lower temperatures fory.1/2,
each of the many free energy minima shown in Fig. 10
separated by finite free energy barriers. The probability
crossing these local barriers and ultimately achieving
global equilibrium by phase separating into two phases in
cated by the coexistence conditions in Fig. 11 would beco
exponentially small as temperature decreases. Therefore
expected that the equilibrium phase transitions shown to
sist for y.1/2 in Fig. 11 would be largely unattainable, an
therefore practically irrelevant in experimental situations.

V. MONTE CARLO SIMULATION

The fact that the local mean field method captures m
of the phenomenologies observed in experiments, suc
hysteresis and scanning behavior@6,7#, suggests that therma
fluctuations, ignored in the mean field theory, generally
in fact not strong enough to allow efficient barrier crossin
in experimental time scales. Monte Carlo simulations of
model can provide a more quantitative understanding of
effect of fluctuations, or equivalently, typical barrier heigh
in the free energy landscape. Extensive Monte Carlo sim
tion studies have been performed for the random field Is
model, mainly focused on the study of critical phenome
@4,25,27#. Viewed in terms of the lattice gas representation
the current model, such simulations correspond to the lat
analog of the grand canonical simulations of molecular m
els, in which thermal equilibrium is sought by creating a
destroying molecules with a specified chemical potential

The presence of the rugged free energy landscape an
resultant glassiness typically pose formidable challenge
achieving equilibration in Monte Carlo simulations@21#. A
variety of algorithms@21,27,29# have been developed to fa
cilitate local barrier crossings, while still enforcing ergodi
ity and detailed balance, and efficiently simulate disorde
systems. We limit our scope in this section to two issues.
show that such a dramatic slow down of the dynamics a
occurs in the current model as the surface field is turned
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and investigate the accuracy of the qualitative trend of eq
librium phase behavior observed in the mean field analy
for small y21/2.

As in the mean field theory,y51/2 case of the model ca
be studied by a straightforward application of the metho
for pure systems. The cluster update algorithm due to W
@20# efficiently eliminates critical slowing down, and can b
applied to the site diluted case by allowing cluster grow
only on the vacant sites@25#. Due to the Ising symmetry, the
simulation samples two phases connected by spin flip s
metry with equal probability belowTc* , and coexistence
densities away from the critical point can be easily obtain
by calculating the average of the magnitude,

r (1)5
^umi u&11

2
, r (2)512r (1), ~22!

where the brackets represent the thermal average.
In addition, we consider the generalized free ene

b f (r) for a given sample$t i% defined as

exp@2Nsb f ~r!#5(
$ni %

dS 1

Ns
(

i
ni t i2r D e2bH. ~23!

For a pure system, the free energyb f (r) as a function of the
order parameter corresponds to the Landau-type free en
which changes its shape into bimodal form as we lower
temperature across the critical point. In simulations, it can
calculated by collecting histograms of density values fo
number of discretized bins, and taking the logarithm of t
distribution. Figure 12 shows the free energyb f (r) near the
critical point for the symmetric case,y50.5. For the disor-
dered cases, the generalized free energy, as the projectio
the full free energy functional into the bulk density plan
can serve as an analog of the mean field counterpart sh
in Fig. 10. It allows one to locate first-order phase tran
tions, if any, in the absence of the Ising symmetry.

We again proceed to the asymmetric case by conside
the adsorption/desorption isotherms. Local free energy ba
ers encountered in relaxations responsible for the slow
namics observed in experiments also severely impede eq
bration of the single spin flip~and to a lesser extent
7-8
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PHASE BEHAVIOR AND DYNAMICS OF FLUIDS IN . . . PHYSICAL REVIEW E67, 041207 ~2003!
cluster update! Monte Carlo simulations. Noncritical slowin
down of equilibration in the Metropolis algorithm thu
closely reflects the glassiness in real dynamics associ
with fluid adsorption, and the hysteresis region can be
cated by identifying regions where the equilibration is u
usually slow. A more quantitative dynamical interpretation
the relaxation in terms of Monte Carlo simulations is d
cussed in Sec. VI.

In pure systems, the relaxation time of the Metropo
simulation diverges with a power law near the critical poi
whereas it remains relatively small in the noncritical r
gimes. Mean field analyses discussed in the preceding
tion suggest that for the present model, as the field streng
increased, signatures of the ubiquitous free energy bar
would appear as widespread slowing down of relaxati
away from the critical point. Such onset of nontrivial hyste
esis in fact occurs via a gradual crossover within a range
temperatures. The analog of the hysteresis boundaries
the Monte Carlo simulations can thus be obtained by sc
ning chemical potential values gradually in either directio
as in mean field theory, but only allowing equilibrations fo
relatively short time periodth . The time scaleth , given in
terms of the spin flip attempts per sites or Glauber Mo
Carlo steps~GMCS!, would have to be larger than relaxatio
times of noncritical pure systems, while small enough su
that barrier crossings, if any, would not occur appreciab
Figure 13 shows the Monte Carlo analog of the sorpt
isotherms fory50.5, andy50.7, where the equilibration
time was taken asth5500 GMCS.

The qualitative trends observed in adsorption isothe
obtained by Monte Carlo simulations closely follow tho
within the mean field theory. However, the boundaries of
hysteresis region are less clear cut than in mean field the
and the onset of the nontrivial hysteresis due to the mult
free energy minima occurs within a range of the parame
space without any sharp transition. Approximate hystere
boundaries are shown in Fig. 15 for symmetric and wea
asymmetric cases. Fory50.5, strong thermal fluctuation

FIG. 12. Free energy as a function of density near the crit
point for y50.5 from Monte Carlo simulations. Solid, dotted, an
dashed lines are forT* 50.52, T* 50.53, andT* 50.55, respec-
tively, whereT* 5T/Tcb is the reduced temperature with respect
the bulk critical pointTcb52.449J/kB @30#. The absolute values o
the free energy have been shifted such thatb f 50 for r50.5.
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produce hysteresis near the critical region, whereas turn
on the surface field would effectively quench thermal flu
tuations. The hysteresis observed fory.0.5 would be
mainly due to the presence of local free energy barri
rather than critical slowing down.

To uncover the fate of the first-order phase transition
they51/2 case as one turns on the surface field, we calcu
the grand potential per sitebv(r) at a number of chemica
potential values within the hysteretic regime. The prese
of surface fields, and the resulting local barriers significan
impede equilibrations of the Monte Carlo simulations ev
for small y21/2, and a straightforward calculation of th
free energy as in Fig. 12 becomes difficult. We get arou
the difficulty by performing the umbrella sampling@31#. The
density range is divided into a number of windows of wid
dr, and simulations collecting histograms are perform
within each windowrn,r,rn1dr via a non-Boltzmann
sampling such that any move that puts the system outside
window is rejected@32#. Pieces of the free energy curve fro
each window are combined together by shifting the abso
values such that the free energy becomes continuous a
window boundaries. At coexistence, the two minima o
tained would be equal in free energy values. Given an ini
guess of the coexistence chemical potential, reweighting
the free energy can be used to locate the coexistence co
tion via

bv~r;m8!5bv~r;m!2(
n

b~m82m!rn1const.

~24!

Figure 14 shows the free energy near coexistence foy
50.6 andy50.7. By comparing the free energy profiles f
the two cases, we observe that increasing the surface
introduces local ‘‘ruggedness’’ into the landscape, whi
gradually overshadows the global bimodal character of

l

FIG. 13. Adsorption/desorption isotherms from Metropo
Monte Carlo simulations withth5500 GMCS.y50.5, and 0.7 for
the top and bottom panels, andT* 50.45, and 0.5, from left to
right.
7-9
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H.-J. WOO AND P. A. MONSON PHYSICAL REVIEW E67, 041207 ~2003!
two-phase coexistence, while lowering the critical tempe
ture. Coexistence densities located as the two minima of
free energy in Fig. 14 are shown in Fig. 15. Although t
slow equilibration of the simulation does not allow one to
further into higher values ofy21/2, the qualitative behavio
closely agrees with the mean field results shown in Fig.

The relative ‘‘smearing’’ of the transition temperatureTh

in simulations compared to the mean field case indicates
the glassiness develops within a range of temperatures ra
than via a sharp transition, and barrier crossings do hap
within the crossover regime. However, the probability f
crossings would become exponentially small as tempera
is lowered away from the crossover, and the equilibrat
needed to achieve macroscopic phase separations is exp
to be unavailable fory*0.7. Similar situation is also ob
served in spin glasses, where the mean field theory with
finite range interactions predicts the spin glass transi
temperature below which free energy barriers betw
minima become infinite in the thermodynamic limit, where
such idealization is thought to be only partially reflected
short ranged models@28#.

FIG. 14. Grand potential landscape near coexistence foy
50.6 andy50.7. Temperature and chemical potential values
(T* ,bm)5(0.4,26.5285), (0.45,25.791), (0.5,25.1953) for y
50.6, and (0.4,26.903), (0.43,26.4065), (0.45,26.108) for y
50.7 from the bottom to the top. The absolute values of the f
energy are arbitrary.
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VI. DYNAMICS OF RELAXATION

A. Nonconserved dynamics

The disappearance of the two-phase coexistence as
field strength is increased, as shown in Fig. 15, implies t
for fluids in mesoporous glasses, thermodynamic driv
force for macroscopic phase separation vanishes. There
the properties of adsorption and desorption of fluids into
porous glass sample in contact with gas reservoirs, ra
than phase separation dynamics of fluids that has been o
studied in relation to porous materials@33–35#, become more
relevant. In this section, we consider the dynamical asp
of the density relaxation in a more quantitative fashion w
Monte Carlo simulations.

The standard Metropolis algorithm for the Monte Car
simulations can be regarded as an implementation of a
ticular dynamical model of Markovian stochastic process
which yields realizations of the nonequilibrium average
the density

r̄ i~ t !5(
$ni %

ni Pm@ni ;t# ~25!

measured in units of GMCS such thatt051 GMCS, where
Pm(n1 , . . . ,nN ;t) is the probability of ni(t). A coarse
grained version of the stochastic dissipative dynamics in
near equilibrium can be described by the Langevin-ty
equation~modelA! @36#

]

]t
r~r ,t !5xt0

21F2
dbF

dr
1h~r ,t !G , ~26!

wherex5]r/]bm is the compressibility,F is the Landau-
Ginzburg-type free energy functional of the form of Eq.~14!,
and h(r ,t) is the stochastic random force assumed to
Markovian:

^h~r ,t !&50, ^h~r ,t !h~r 8,t8!&5
2t0

x
d~r2r 8!d~ t2t8!.

~27!

Glauber dynamics or modelA ~26! provide qualitative
descriptions of the nonconserved order parameter relaxa

e

e

proximate
FIG. 15. Phase diagrams from Monte Carlo simulations. Filled and open circles are the coexistence densities, and the ap
boundaries of hysteresis region, respectively. Lines are guides to the eye.
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PHASE BEHAVIOR AND DYNAMICS OF FLUIDS IN . . . PHYSICAL REVIEW E67, 041207 ~2003!
dynamics near equilibrium in systems such as random fi
Ising spins or spin glasses. For fluids in porous materials,
relaxation rate obtained can be regarded as a lower boun
the actual rate since mass conservation, in general, fur
restricts density relaxations. In particular, it is expected t
the strongly hysteretic regimes as shown in Fig. 13 wh
Glauber dynamics show unusually slow relaxation rat
would be paralleled in the conserved case with even slo
rates.

Nonconserved order parameter dynamics of the rand
field Ising model shows behavior qualitatively different fro
the ordinary critical dynamics of pure systems. The prese
of random fields, while pinning down thermal fluctuation
create local free energy barriers, and changes the u
power law scaling of the relaxation time into the Arrheniu
type activated dynamics@37#

tG;exp@A~j/a!c#, ~28!

wherej is the correlation length andc is a dynamical expo-
nent. The exponential dependence of the relaxation time
temperature in Eq.~28! provides a natural conceptual expl
nation of the glassy dynamics and hysteresis seen in ex
ments on fluids in disordered pores, and is consistent w
the presence of a large number of local minima in the f
energy landscape revealed by the mean field treatment.

To examine the nonconserved dynamics of the model,
consider the hysteretic regime above the first-order ph
transition fory50.7 andT* 50.5, shown in Fig. 16. As see
in Fig. 15, the condition corresponds to the region where

FIG. 16. Density relaxations in Glauber dynamics fory50.7
and T* 50.5. The top panel shows the adsorption and desorp
isotherms~open symbols connected by dotted lines! obtained with
th5500 GMCS, and the equilibrium isotherm~filled circles with
solid lines!. The bottom panel shows the integrated relaxation ti
obtained from the time correlation function.
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crossover into the strongly hysteretic regime begins to h
pen for a relatively smally21/2, allowing us to achieve
equilibrium with the conventional Wolff algorithm~shown as
filled circles in Fig. 16! and examine the onset of activate
dynamics and glassiness with relative ease.

Since the equilibrium conditions are known, a we
defined measure of the relaxation rate is provided by ex
ining the time correlation function of density fluctuation
around the equilibrium value. Typical density time series
two different conditions along the equilibrium isotherm a
shown in Fig. 17. The activated nature of the density flu
tuations is clearly seen, which becomes more pronounced
higher densities, where the system is typically stuck in
local minimum of free energy for relatively long time per
ods and makes infrequent transitions to neighboring min
made possible by occasional barrier crossings.

The evolution of the relaxation time of Glauber dynami
tG , defined as the integrated autocorrelation time of the d
sity correlation function calculated from the time series
shown in Fig. 16. It is seen that the relaxation time increa
exponentially as one gets inside the hysteresis region.
slowing down of Glauber dynamics is due to the increas
role that the activated barrier crossing plays in equilibrati
not to an underlying second-order phase transition as
usually encounters in pure systems. The hysteresis one
serves in adsorption experiments is accordingly due to
presence of multitudes of free energy minima arising fro
the disorder, and the system’s inability to cross the lo
barriers within the experimentally realizable time sca
rather than the ‘‘conventional’’ type of hysteresis and fir
order phase transition, as has often been assumed previo
where two free energy minima corresponding to the low a
high density phases compete with a barrier between th
proportional to the interfacial contribution.

B. Conserved dynamics

As discussed in the preceding section, Glauber dynam
does not conserve mass, and therefore only provides ind

n

e

FIG. 17. Density fluctuations at equilibrium in Glauber dynam
ics for y50.7 andT* 50.5 at bm525.47 ~top!, and bm525.4
~bottom!.
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H.-J. WOO AND P. A. MONSON PHYSICAL REVIEW E67, 041207 ~2003!
guidance on real dynamics of fluid adsorption in poro
glasses. Huse has considered the effect of order param
conservation to the activated dynamics of the random fi
Ising model@38#. It was argued that there exists a crosso
wave vector that distinguishes the diffusion limited and
activated dynamics regime. In terms of the dynamic struct
factor for a wave vector corresponding to length scales la
than the typical pore sizes, one initially observes a fast
ponential decay of correlations due to diffusion as in norm
fluids, followed by a slow and stretched residual compon
that corresponds to the activated dynamics between l
minima in free energy landscape@39#. The latter regime is
characterized by a broad distribution of relaxation times
logarithmic scale, consistent with the activated dynam
picture, Eq.~28!.

The presence of the dynamical crossover between the
tial diffusion-limited regime and the subsequent activat
dominated regime provides a natural explanation for the p
nomenology observed in typical adsorption experiments
fluids @40#, where one encounters relatively rapid relaxatio
of the fluid density in response to a change in external c
trol parameters such as vapor pressure of the gas rese
followed by a ‘‘quasiequilibrium’’ stage where the syste
remains essentially unchanged over periods of time m
orders of magnitude longer than the initial time scale.
describe such relaxation behavior with the current model,
consider in this section a quantitative connection between
nonconserved Glauber dynamics and conserved dynamic
fluids.

The analog of modelA equation~26! that includes mass
conservation law is the modelB @36# equation, which can be
written in q space as

]rq

]t
52Dxq2@bm̂@rq#1hq~ t !#, ~29!

where D is the diffusion coefficient, andm̂ is the Fourier
transform ofm@r#5dF/dr(r ,t). The random field is char
acterized by

^hq~ t !&50,

^hq~ t !h2q8~ t8!&5
2

Dxq2
dq,q8d~ t2t8!. ~30!

The mass conservation law, reflected by the presence o
q2 factor (2¹2 in the real space! in Eqs. ~29! and ~30!,
would significantly slow down the already slow glassy rela
ations of nonconserved dynamics of the model, and it wo
be useful to be able to estimate the time scales of conse
dynamics from Glauber dynamics simulations. In fact, co
paring Eqs. ~26!, ~27!, and ~29!, ~30!, we note that a
q-dependent time rescaling

t̄ q5Dq2t0t ~31!

puts the modelB equations into an effective modelA form.
The density elements$rq(t)% in Eq. ~29! are coupled to one
another via the nonlinear functionalm̂ generating nontrivial
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behaviors such as glassy dynamics. Once obtained,
component represents the time evolution of the average
sity of a volume element with linear dimensionL52p/q
with respect to the uniform time scalet. By renormalizing
the physical time scale with Eq.~31!, which amounts to a
contraction, the equation of motion satisfied by the origin
solution is transformed into Eqs.~26! and ~27! with t re-
placed byt̄ q .

Physically, the rescaling factor

tD5
L2

4p2D
~32!

in Eq. ~31! corresponds to the diffusive relaxation time of th
volume element needed to produce an elementary fluctua
in the bulk density with mass conservation. By contracti
the time scale into a unit oftD , we are ‘‘relaxing’’ the con-
servation law and treating the system in an effective gra
canonical ensemble. In practice, Eq.~31! allows one to esti-
mate the conserved dynamics from simulations of nonc
served dynamics, which are less demanding in general. A
special case, one expects that the characteristic relaxa
time of conserved dynamics,tK , can be estimated by

tK5tDtG /t0 . ~33!

C. Kawasaki dynamics simulation

A general quantity that can be examined to study the c
served order parameter dynamics of fluid density is the
namical structure factor̂r2q(0)rq(t)& measured in light
scattering experiments. However, to calculate the struc
factor for a wave vectorq with conservation law from simu-
lations, it is necessary to consider a system much larger
L52p/q, such that appreciable density fluctuations beco
possible in the volume element of sizeL with the rest of the
volume serving as the reservoir.

We instead choose to mimic a typical situation in adso
tion experiments@41#, depicted in Fig. 18, where a syste
with linear dimensionL is in contact with grand canonica
reservoirs atz50 andz5L kept at a chemical potential, an
probe the time dependent response of the density inside
system reacting to a sudden change in the external con
parameter. Periodic boundary conditions are used forx andy
directions, reducing the spatial variations into one dime

FIG. 18. Kawasaki dynamics simulation setup. Both the res
voir and the system are filled with a realization of the porous gla
Periodic boundary conditions apply to thex andy directions. Fluids
in the reservoirs and in the system are simulated by Glauber
Kawasaki dynamics, respectively. The interfaces atz50 andz5L
are updated by both algorithms.
7-12
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PHASE BEHAVIOR AND DYNAMICS OF FLUIDS IN . . . PHYSICAL REVIEW E67, 041207 ~2003!
sion. A realization of Vycor glass spans both the system
reservoirs, whereas fluids in the system and reservoirs ev
with Kawasaki and Glauber dynamics, respectively. Sim
techniques have been used by Leung and Luzar@42# in the
study of water cavitation dynamics in slit geometry of h
drophobic surfaces.

In the simulation, one MCS~Monte Carlo step! first con-
sists of a random selection of a fluid particle inside the s
tem, and attempting to move it into one of its vacant neig
boring sites, which are repeatedNv times whereNv is the
total number of particles inside. It is followed by the Glaub
step, in which a void site in the reservoirs are chosen
updatingNs times, whereNs is the total number of sites with
t i51 in the reservoirs. Care must be taken in the treatmen
the interfacial regions atz50 andz5L not to introduce any
artificial bias into the dynamics of the total system. The tw
dimensional planes of interfacial regions were separa
from the rest, and as the third step of the MCS, sites w
t i51 were chosen at random within the planes, Glauber
dating was attempted, and when it resulted inni51, a sub-
sequent diffusion attempt was made. In addition, the dif
sive moves of fluid particles inside the system into t
boundary planes were followed by Glauber updates.

To initiate relaxation dynamics, the system and the re
voirs are first equilibrated with Glauber dynamics, each
two different chemical potentials such that the initial unifor
density profiles atr0 and r` , respectively, for the system
and the reservoirs are obtained. Time is set ast50 and the
total system evolves via the composite algorithm descri
above. The dynamical relaxation is probed by measuring
one-dimensional density profile,

r̄~z,t !5
r~z,t !2r0

r`2r0
, ~34!

with r̄(z,0)50 andr̄(z,`)51. If one assumes that the dy
namics is entirely described by the simple diffusion w
diffusion coefficientD, one can obtain the solution to th
diffusion equation as~Appendix B!

r̄~z,t !5124 (
n51,3,5, . . .

` sin
npz

L

np
e2D(np/L)2t. ~35!

The average density inside the systemr̄(t)
5*0

L(dz/L) r̄(z,t) is given by

r̄~ t !5128 (
n51,3,5, . . .

e2D(np/L)2t

n2p2
. ~36!

The smallt limit of the solution is~Appendix B!

r̄~z!.4S Dt

pL2D 1/2

. ~37!

The t1/2 scaling of Eq.~37! can in fact be inferred from the
dimensional argument@43#. The prefactor of the initial scal
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ing regime given by Eq.~37! allows one to extract values o
the diffusion coefficient of fluids in Vycor from simulations

We first consider a typical behavior away from the hy
teretic regime, where a normal fluidlike behavior is expect
With a single minimum dominating the free energy lan
scape, density relaxations would be essentially diffusion l
ited, described well by the ideal diffusion result, Eq.~35!.
Figure 19 shows the time evolution of the density profi
inside the system as well as the bulk density for a noneq
librium relaxation at y50.7, T* 50.8, and bm523.6,
where no appreciable hysteresis is found in grand canon
simulations. The relaxation behavior closely agrees with
prediction of the ideal diffusion with the diffusion coefficien
D obtained by the initial straight line portion of the logarith
mic plot of r̄(t), which corresponds to Eq.~37!. Also shown
in Fig. 19 is the Glauber dynamics density relaxation, r
caled by the diffusional relaxation timetD , which agrees
well with the Kawasaki dynamics results. It corresponds
Eq. ~33! with tG;O(1) GMCS.

Figure 20 shows the corresponding results at a lower t
perature aty50.7, T* 50.5, andbm525.55, which is lo-
cated at a boundary of the hysteresis region shown in Fig.
The initial diffusion limited regime witht1/2 scaling ends
around t.O(104) MCS, and the bulk density relaxatio
makes a crossover in logarithmic scale into the effect
grand canonical relaxation represented by the Glauber
namics rescaled bytD .

The bulk density relaxations shown in Figs. 19 and 20
expected to have similar behavior when probed in terms
the dynamic structure factor measured in scattering exp
ments. Thet1/2 scaling, and the effective Glauber dynami
relaxation regimes correspond to the standard expone
decay of correlations due to diffusion, and the stretched
laxations with broad distribution of time scales of the cor
lation function.

Close agreement of the effective Glauber dynamics r
caled by the diffusive relaxation time with the conserv

FIG. 19. ~a! Time evolution of density profile fory50.7, T*
50.8, bm523.6, r050, r`50.31. Thez coordinate shown is in
units ofb52a. Symbols and solid lines are the Kawasaki dynam
simulation and the ideal diffusion profile att51, 13103, 1
3104, 23104, 53104, and 13105 in MCS, respectively.D55
31023 b2/MCS. ~b! Bulk density in the Kawasaki dynamics~solid
line!, ideal diffusion@Eq. ~36!; dotted line#, and the Glauber dynam
ics rescaled bytD /t0 with t051 GMCS.
7-13
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dynamics allows one to estimatetK via Eq. ~33! for situa-
tions where the slow glassy dynamics due to the activa
barrier crossings prohibits one to perform conserved or
parameter simulations for large systems. The relaxation t
tG in a noncritical system is nearly independent of the s
tem size, and a fairly good estimate can be made with si
lations of a moderately sized system. An additional estim
of the diffusion coefficientD for the system from source
such as thet1/2 scaling regime in Fig. 20 yieldstK for
samples of arbitrarily large sizes.

One can calibrate Kawasaki dynamics of the pure lat
gas to make connections from the simulation time scale
units of the Monte Carlo steps~MCS! per site to the physica
time scale@42#. Figure 21 shows the diffusion coefficient o
the bulk lattice gas on an fcc lattice obtained by calculat
the cumulative mean square displacements of a tagged
ticle at T* 50.55, which roughly corresponds to the trip
point temperature of argon. Comparing the diffusion coe

FIG. 20. ~a! Time evolution of density profile fory50.7, T*
50.5, bm525.55, r050, r`50.31. Symbols and solid lines ar
the Kawasaki dynamics simulation and the ideal diffusion profile
t51, 13103, 13104, 23104, 53104, and 13105 in MCS, re-
spectively.D51.531023 b2/MCS. ~b! Bulk density as a function
of time. Symbols are the same as in Fig. 19 witht0

50.31 GMCS.

FIG. 21. Self-diffusion coefficient of the bulk lattice gas atT*
50.55 as a function of density.D is in units ofa2/MCS.
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cients of argon at the triple pointD51.631025 cm2 s21

@44# and that of the lattice gas near the high density lim
D.0.005a2MCS21, we get 1 MCS.0.03 ns fora530 Å.
With tG;O(102) MCS for the simulated system of Fig. 20
tK /L2;O(105) s cm22. Diffusion coefficient is found to
decrease significantly as density increases. An analog
simulation of the initial diffusion limited regime yielded
D.2.031025b2/MCS for bm.25.45 andr050.4, which
corresponds to the condition deep inside the hysteresis
gion in Fig. 20, wheretG;O(104) GMCS. Equation~33!
givestK /L2*O(10) yr/cm2.

The overall dynamics as well as relaxation times wou
be a function of the lattice constanta among other param
eters. The valuea530 Å chosen for the simulations de
scribed above is expected to overestimate the degre
which barrier crossings occur in density relaxations. Sinc
filled pore contains approximately;(d/a)3 lattice sites,
each of which acting as a single particle in Monte Ca
simulations, a collective motion of the group of particl
filling a pore would become more likely asa increases. Asa
is decreased to microscopic lengths;5 Å corresponding to
the molecular size of adsorbing gases, barrier cross
would become increasingly improbable, and the relaxat
times would, in general, be longer than those obtained for
Hamiltonian with larger values ofa.

As a partial confirmation of such trend, we examine t
relaxation in the Glauber dynamics in the hysteretic regi
for a515 Å at T* 50.4 ~Fig. 22!. A few typical trajectories
in the Glauber dynamics starting with different initial cond
tions are shown in Fig. 23. Long periods of quasiequilibriu
in local minima are punctuated with rare fluctuations cor
sponding to the barrier crossings. The overall relaxation ti
is expected to betG*O(106). Assuming that the diffusion
coefficient is smaller than the value found for conditions
Fig. 20, each of the typical quasiequilibrium stages shown
Fig. 23 would have durations of the order of more than s
eral years/cm2.

VII. CONCLUSION

The mean field and Monte Carlo simulation results d
scribed in this paper provide a fairly comprehensive und

t

FIG. 22. ~a! Boundaries of hysteresis region and~b! adsorption/
desorption isotherms fora515 Å, y50.9 from the Monte Carlo
simulations.T* 50.4 in ~b!.
7-14
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PHASE BEHAVIOR AND DYNAMICS OF FLUIDS IN . . . PHYSICAL REVIEW E67, 041207 ~2003!
standing of the phenomenologies observed in experimen
fluid adsorption on disordered mesoporous glasses. The
modynamic behavior is fundamentally changed by the
pearance of the large number of local free energy minima
the asymmetry parametery21/2 is increased from zero. Th
local mean field theory provides a natural platform to stu
such qualitative features, and gives an accurate qualita
description of the hysteretic and scanning behavior found
adsorption/desorption experiments@6,7#. The effects of ther-
mal fluctuations allowing the system to cross local free
ergy barriers are expected to be minimal, in general, un
conditions appropriate for real fluids~large field,y21/2), as
indicated by the trends obtained in our Monte Carlo simu
tions.

In adsorption experiments, one typically observes tha
change in external vapor pressure is followed by a fa
rapid approach to a quasiequilibrium state, which sub
quently appears unchanged over experimentally acces
time periods@40#. The latter dynamical regime has ofte
been confused as corresponding to thethermodynamicmeta-
stable phase one encounters in the conventional first-o
phase transition as in pure systems and wetting transiti
The two stage nature of the density relaxations describe
Sec. VI, consisting of the diffusion limited and the activat
dynamics regimes, provides a natural and direct explana
of such phenomenology.

It will be of interest to see whether one can use off-latt
models that incorporate molecular properties of adsorb
gases as well as fluid-solid interactions more faithfully, a
make more detailed quantitative predictions based on
overall picture described within the current model. Anoth
important aspect that has not been treated here is the effe
hydrodynamic flows on the dynamics. Inclusion of mome
tum conservation to the dynamical equations such as
~29! and related implementations of the coarse grained si
lation based on the current model might provide valua
insights.
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FIG. 23. Density relaxations in Glauber dynamics fora
515 Å, y50.9, andT* 50.4 with various initial conditions.
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APPENDIX A: MEAN-FIELD THEORY

We consider the Ising Hamiltonian, Eq.~2a!, with an extra
external fielddhi ,

H52
1

2 (
i j

Ji j si t isj t j2(
i

hi8si t i , ~A1!

wherehi85hi1dhi andJi j 5(J/2)d ur i2r j u,a
. The free energy

is given by

2bF5^ ln Z@ t i #& t , ~A2!

where

Z@ t i #5(
$si %

e2bH. ~A3!

The average magnetization, assumed to be self-averagin
given by m5^mi& t , wheremi is the thermal average for
given sample,

mi5
] ln Z@ t i #

]bdhi
. ~A4!

Applying the Hubbard-Stratonovich transformation toZ@ t i #
@45# gives

Z@ t i #5(
$si %

E Dc expF2
1

2 (
i j

c iKi j c j

1(
i

@si t i~c i1bhi8!#G , ~A5!

whereDc includes the normalization factor. The interactio
matrix Ki j for the field is related to the spin interaction b
Ki j 5kBTJi j

21 . Summing over$si%, we get

Z@ t i #5E Dce2S[c i ,t i ] , ~A6!

where the action is given by

S@c i ,t i #5
1

2 (
i j

c iKi j c j2(
i

ln 2 cosh@ t i~c i1bhi8!#

5
1

2 (
i j

c iKi j c j2(
i

t i ln 2 cosh~c i1bhi8!,

~A7!

in which the constant term has been dropped in the sec
line.

Mean field profiles$c̄ i
a% satisfy the equation]S/]c i u c̄

j
a

50 or

(
j

Ki j c̄ j
a5t i tanh~ c̄ i

a1bhi8!. ~A8!
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The solution indexa allows for the situations where ther
exist many distinct solutions to Eq.~A8!, characteristic of the
disordered systems. The mean field approximation amo
to including contributions to the functional integral in E
~A6! only from the minima:

Z̄@ t i #5(
a

e2S[ c̄ i
a ,t i ] . ~A9!

Equation~A4! becomes

mi5
1

Z̄@ t i #
(
a

mi
ae2Sa, ~A10!

where

mi
a52

]Sa

]bdhi
5t i tanh~ c̄ i

a1bhi8! ~A11!

andSa[S@c̄ i
a ,t i #. The minimized actionSa , given in terms

of the field c̄ i
a , can be replaced by the Legendre transfo

in the zero-field limit,

bFa@mi
a#5 lim

dhi→0
FSa1(

i
bdhimi

aG . ~A12!

Equations~A7!, ~A8!, ~A11!, and~A12! yield Eqs.~14! and
~15!.

APPENDIX B: IDEAL DIFFUSION

We consider the ideal one-dimensional diffusion of flui
with diffusion coefficientD in the system shown in Fig. 18
The density profile at timet, r(z,t) satisfies the diffusion
equation

]r

]t
5D

]2r

]z2
~B1!

subject to the boundary and initial conditions

r~0,t !5r~L,t !5r` , ~B2a!

r~z,0!5r0 ~0,z,L !. ~B2b!

In the asymptotic limitL→`, or t→0, the couping be-
tween the two interfaces atz50 andz5L can be ignored,
and the solution can be written as
.

04120
ts

r~z,t !.r i~z,t !1r i~L2z,t !, ~B3!

wherer i(z,t) is the profile for the system bounded with a
interface only atz50. The calculation ofr i(z,t) is most
easily done by exploiting the symmetry atz50 @43#, which
yields

r i~z,t !5r01DrF12erfS z

2ADt
D G , ~B4!

where Dr5r`2r0. The reduced densityr̄(z,t)5@r(z,t)
2r0#/Dr is given by

r̄~z,t !.22erfS z

2ADt
D 2erfS L2z

2ADt
D , ~B5!

which is valid forL@2ADt. The average inside the syste
r̄(t)5(1/L)*0

Ldzr̄(z,t) corresponding to Eq.~B5! is

r̄~ t !.2F12erfS L

2ADt
D 22S Dt

pL2D 1/2

~e2L2/4Dt21!G .

~B6!

Taking the limitDt/L2→0 of Eq. ~B6! yields Eq.~37!.
For large t with a finite L, fluids inside the system is

affected by both of the interfaces, producing deviations fr
Eqs.~B5! and~B6!. To find the general solution, we expan
r̄(z,t) in Fourier series@46# as

r̄~z,t !5S 2

L D 1/2

(
n51

`

an~ t !sin
npz

L
, ~B7!

such that it satisfies the boundary conditionr̄(0,t)5 r̄(L,t)
50. Substitution into Eq.~B1! yields the equation for the
Fourier coefficient,

dan

dt
5

21/2npD

L3/2
@12~21!n#2D~np/L !2an~ t !. ~B8!

The initial condition~B2b! implies an(0)50. Solving Eq.
~B8!, we get

an~ t !5
~2L !1/2

np
@12~21!n#@12e2D(np/L)2t#. ~B9!

Substitution of Eq.~B9! into Eq. ~B7! gives Eq.~35!.
.

ev.
@1# L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, and M
Sliwinska-Bartkowiak, Rep. Prog. Phys.62, 1573~1999!.

@2# R. Evans, J. Phys.: Condens. Matter2, 8989~1990!.
@3# P.-G. de Gennes, J. Phys. Chem.88, 6469~1984!.
@4# D.P. Belanger and A.P. Young, J. Magn. Magn. Mater.100, 272

~1991!.
@5# L. Monette, A.J. Liu, and G.S. Grest, Phys. Rev. A46, 7664

~1992!.
@6# E. Kierlik, P.A. Monson, M.L. Rosinberg, L. Sarkisov, and G
Tarjus, Phys. Rev. Lett.87, 055701~2001!.

@7# H.-J. Woo, L. Sarkisov, and P.A. Monson, Langmuir17, 7472
~2001!.

@8# L.D. Gelb and K.E. Gubbins, Langmuir14, 2097~1998!.
@9# J.C. Lee, Phys. Rev. B46, 8648~1992!.

@10# E. Pitard, M.L. Rosinberg, G. Stell, and G. Tarjus, Phys. R
Lett. 74, 4361~1995!.
7-16



s

ys

g,

ys

y

n-

-

.

s

,

PHASE BEHAVIOR AND DYNAMICS OF FLUIDS IN . . . PHYSICAL REVIEW E67, 041207 ~2003!
@11# E. Kierlik, M.L. Rosinberg, and G. Tarjus, J. Stat. Phys.89,
215 ~1997!.

@12# M. Schwartz, J. Villain, Y. Shapir, and T. Nattermann, Phy
Rev. B48, 3095~1993!.

@13# J.W. Cahn, J. Chem. Phys.42, 93 ~1965!.
@14# H.A. Makse, S. Havlin, M. Schwartz, and H.E. Stanley, Ph

Rev. E53, 5445~1996!.
@15# H.A. Makse, G.W. Davies, S. Havlin, P.C. Ivanov, P.R. Kin

and H.E. Stanley, Phys. Rev. E54, 3129~1996!.
@16# P. Wiltzius, F.S. Bates, S.B. Dierker, and G.D. Wignall, Ph

Rev. A36, 2991~1987!.
@17# P. Levitz, G. Ehret, S.K. Sinha, and J.M. Drake, J. Chem. Ph

95, 6151~1991!.
@18# M. Teubner, Europhys. Lett.14, 403 ~1991!.
@19# W.H. Press, S.A. Teukolsky, W.T. Vertterling, and B.P. Fla

nery, Numerical Recipes in C~Cambridge University, New
York, 1992!.

@20# U. Wolff, Phys. Rev. Lett.62, 361 ~1989!.
@21# M.E.J. Newman and G.T. Barkema,Monte Carlo Methods in

Statistical Physics~Oxford University, New York, 2001!.
@22# M.F. Sykes and J.W. Essam, Phys. Rev.133, A310 ~1964!.
@23# D. Lancaster, E. Marinari, and G. Parisi, J. Phys. A28, 3959

~1995!.
@24# R.B. Stinchcombe, inPhase Transitions and Critical Phenom

ena, edited by C. Domb and J.L. Lebowitz~Academic, New
York, 1983!, Vol. 7.

@25# T. MacFarland, G.T. Barkema, and J.F. Marko, Phys. Rev
53, 148 ~1996!.

@26# M.E.J. Newman and G.T. Barkema, Phys. Rev. E53, 393
~1996!.
04120
.

.

.

s.

B

@27# J. Machta, M.E.J. Newman, and L.B. Chayes, Phys. Rev. E62,
8782 ~2000!.

@28# K.H. Fischer and J.A. Hertz,Spin Glasses~Cambridge Univer-
sity, New York, 1991!.

@29# E. Marinari and G. Parisi, Europhys. Lett.19, 451 ~1992!.
@30# A.J. Liu and M.E. Fisher, Physica A156, 35 ~1989!.
@31# G.M. Torrie and J.P. Valleau, Chem. Phys. Lett.28, 578

~1974!.
@32# D. Chandler, Introduction to Modern Statistical Mechanic

~Oxford University, New York, 1987!.
@33# J.C. Lee, Phys. Rev. Lett.70, 3599~1993!.
@34# B. Strickland, G. Leptoukh, and C. Roland, J. Phys. A28,

L403 ~1995!.
@35# A. Chakrabarti, Phys. Rev. Lett.69, 1548~1992!.
@36# P.C. Hohenberg and B.I. Halperin, Rev. Mod. Phys.49, 435

~1977!.
@37# D.S. Fisher, Phys. Rev. Lett.56, 416 ~1986!.
@38# D.A. Huse, Phys. Rev. B36, 5383~1987!.
@39# S.B. Dierker and P. Wiltzius, Phys. Rev. Lett.58, 1865~1987!.
@40# D.H. Everett, inThe Solid Gas Interface, edited by E.A. Flood

~Academic, New York, 1982!, Vol. 2, p. 1055.
@41# L. Sarkisov and P.A. Monson, Langmuir16, 9857~2000!.
@42# A. Luzar and K. Leung, J. Chem. Phys.113, 5836~2000!.
@43# L.D. Landau and E.M. Lifshitz, Fluid Mechanics

~Butterworth-Heinemann, Oxford, 1987!.
@44# J.-P. Hansen and I.R. McDonald,Theory of Simple Liquids

~Academic Press, San Diego, CA, 1986!.
@45# G. Parisi, Statistical Field Theory~Perseus, Reading, MA

1998!.
@46# W.M. Deen,Analysis of Transport Phenomena~Oxford, New

York, 1998!.
7-17


